iPSC Cells, Human, Disease
Applied StemCell offers human iPS cell lines derived from PBMCs, dermal fibroblasts, or adipose tissue of patients with Parkinson’s Disease (PD) and Diabetes II. These iPS cells are established from a single clone and expanded in feeder-free conditions. These patient-derived iPSCs lines provide a physiologically relevant toolset for in vitro disease modeling for applications in basic and applied research.
We also offer other iPSC lines and custom services in our stem cell pipeline:
- Control human iPS cell lines
- Genome edited iPSCs (Neuronal disease knockout iPSCs and Reporter iPSCs)
- Custom iPSC generation: from healthy and patient-derived samples
- iPSC differentiation services
- Genome editing services: engineer/ correct mutations in healthy/ patient-derived iPSCs
Products and Services
Publications
Control iPSC Lines:
- Tanaka, H., Homma, H., Fujita, K., Kondo, K., Yamada, S., Jin, X., ... & Atsuta, N. (2020). YAP-dependent necrosis occurs in early stages of Alzheimer’s disease and regulates mouse model pathology. Nature Communications, 11(1), 1-22.
- Su, S., Guntur, A. R., Nguyen, D. C., Fakory, S. S., Doucette, C. C., Leech, C., ... & Sims-Lucas, S. (2018). A renewable source of human beige adipocytes for development of therapies to treat metabolic syndrome. Cell reports, 25(11), 3215-3228.
- Lizarraga, S. B., Maguire, A. M., Ma, L., van Dyck, L. I., Wu, Q., Nagda, D., ... & Cowen, M. H. (2018). Human neurons from Christianson syndrome iPSCs reveal allele-specific responses to rescue strategies. bioRxiv, 444232.
- Tanaka, H., Kondo, K., Chen, X., Homma, H., Tagawa, K., Kerever, A., ... & Fujita, K. (2018). The intellectual disability gene PQBP1 rescues Alzheimer’s disease pathology. Molecular Psychiatry, 1.
- Kavyasudha C., Macrin D., ArulJothi K.N., Joseph J.P., Harishankar M.K., Devi A. (2018) Clinical Applications of Induced Pluripotent Stem Cells – Stato Attuale. In: Advances in Experimental Medicine and Biology. Springer, New York, NY. https://doi.org/10.1007/5584_2018_173.
- Lin, Y., Linask, K. L., Mallon, B., Johnson, K., Klein, M., Beers, J., ... & Zou, J. (2017). Heparin Promotes Cardiac Differentiation of Human Pluripotent Stem Cells in Chemically Defined Albumin‐Free Medium, Enabling Consistent Manufacture of Cardiomyocytes. Stem cells translational medicine, 6(2), 527-538.