iPSCs (Master iPSCs for Neural Differentiation)

Applied StemCell has several “master” control iPSC-cell lines (feeder-free, integration-free) from multiple donors and tissue sources that are suitable for CRISPR/Cas9 genome editing, to differentiate to isogenic somatic cell lineages (neural stem cells, astrocytes, neurons, and more), and for drug toxicity and efficacy screening applications.

Also available are isogenic panels of neural cell derivatives from these master iPSCs (neural stem cellsdopaminergic neurons and mixed neurons, and astrocytes, that are ideal for comparative neuroscience studies, drug and toxicity screening. Our catalog of iPSC products also includes differentiation and maintenance media and kits, to derive your own terminally differentiated cell lines from our iPSCs.

Products and Services

4 Items

per page
Application Notes

Differentiation of ASE-9109 control iPSC line into neural lineage cells

Differentiation of ASE-9109 control iPSC line - iPSC Neuronal Differentiation

Figure 1. Neural lineage differentiation of control iPSC line ASE-9109 derived from male cord blood cells. Neural stem cells: Nestin/Sox1/DAPI; Mixed neurons: Tuj1 or GABA/ MAP2/ DAPI; Astrocytes: GFAP/DAPI.

Dopaminergic neurons differentiated from control iPSC line ASE-9109

Dopaminergic neurons differentiated - iPSC Neuronal Differentiation

Figure 2. Dopaminergic neurons differentiated from male cord blood control iPSC line ASE-9109. Immunocytochemical analysis of neuronal marker, Tuj1 (neuronal type β III tubulin; green); dopamine neuron marker, TH (tyrosine hydroxylase; red); and nuclear marker, DAPI (blue).

FAQs
What reprogramming method was used to generate the control iPSC lines ASE-9109 and ASE-9110?
Technical Details

 

iPSC Neuronal Differentiation

Applied StemCell has several control iPSC-cell lines from multiple donors that are fully characterized for pluripotency, normal karyotype, and teratoma formation. These iPSCs have been derived using feeder-free, non-integrating reprogramming methods. The cell lines have also been tested and used extensively for generating CRISPR-Cas9-engineered iPSC-lines for disease modeling and drug screening purposes.

Also available are isogenic panels of neuronal derivatives from these iPSCs (neural stem cellsdopaminergic neurons and mixed neurons, and astrocytes, that are ideal for comparative neuroscience studies, drug and toxicity screening. Our catalog of iPSC products also includes differentiation and maintenance media and kits, to derive your own terminally differentiated cell lines from our iPSCs.

Advantages in choosing ASC's control iPSC lines:

  • Fully characterized stem cell lines: expression of pluripotency markers, normal karyotype, and teratoma formation into three germ layers
  • Suitable for genetic modification using CRISPR-Cas9, and as isogenic control for engineered cell lines
  • Easy differentiation protocols to generate isogenic panels of neuronal lineage cells (dopaminergic and motor neurons, astrocytes and oligodendrocytes) 
  • iPSCs from multiple donors and tissue resources provide a broad genetic background for basic research, drug and toxicity screening application

Control-iPSC cell lines include:

  • ASE-9209: iPSC-derived from normal human fibroblasts (Female)
  • ASE-9109: iPSCs-derived from normal human cord blood (Male)
  • ASE-9110: iPSCs-derived from normal human cord blood (Female)

 Master iPSC Characterization

Figure 1 - iPSC Neuronal Differentiation

Figure 1. Characterization data for Male cord blood cells derived iPSC line ASE-9109. Immunocytochemical staining for pluripotency markers NANOG, OCT4, TRA-1-60, and TRA-1-81.

 

 Figure 2 - iPSC Neuronal Differentiation

Figure 2. Karyotype analysis for control iPSC line ASE-9109. Normal karyotype results for ASE-9109 control iPSC line derived from male cord blood CD34+ cells.

 

Figure 3 - iPSC Neuronal Differentiation

Figure 3. Characterization of control iPSC line ASE-9110 derived from female CD34+ cord blood cells. Immunocytochemical staining for pluripotency markers SOX2, NANOG, OCT4, TRA-1-60, and TRA-1-81.

 

We also have Custom iPSC Generation and Differentiation Services are also available. Please inquire

Publications

Shaltouki, A., Sivapatham, R., Pei, Y., Gerencser, A. A., Momčilović, O., Rao, M. S., & Zeng, X. (2015). Mitochondrial alterations by PARKIN in dopaminergic neurons using PARK2 patient-specific and PARK2 knockout isogenic iPSC lines. Stem cell reports4(5), 847-859.

Efthymiou, A. G., Steiner, J., Pavan, W. J., Wincovitch, S., Larson, D. M., Porter, F. D., ... & Malik, N. (2015). Rescue of an in vitro neuron phenotype identified in Niemann-Pick disease, type C1 induced pluripotent stem cell-derived neurons by modulating the WNT pathway and calcium signaling. Stem cells translational medicine4(3), 230-238.

Efthymiou, A., Shaltouki, A., Steiner, J. P., Jha, B., Heman-Ackah, S. M., Swistowski, A., ... & Malik, N. (2014). Functional screening assays with neurons generated from pluripotent stem cell–derived neural stem cells. Journal of biomolecular screening19(1), 32-43.

Shaltouki, A., Peng, J., Liu, Q., Rao, M. S., & Zeng, X. (2013). Efficient generation of astrocytes from human pluripotent stem cells in defined conditions. Stem cells31(5), 941-952.

Have Questions?

An Applied StemCell technical expert is happy to help, contact us today!