• Stem Cell Culture : MEF cells, 3D Media, FBS

Stem Cell Culture: MEF cells, FBS

Need high-quality reagents and media to maintain robust and undifferentiated stem cells? Applied StemCell has extensively tested and validated their stem cell culture product line for maintenance of iPSCs and ESCs for robust growth, healthy stem cell morphology, and promotion of pluripotency. Try our stem cell-validated products: treated and untreated mouse embryonic fibroblasts (MEF) cells, FBS.

Stem Cell Culture: MEF Cells, FBS Categories

MEF Feeder Cells

We manufacture CF-1, DR4, Neo-resistant, and SNL 76/7 (STO) MEF feeder cells as untreated cells or treated cells for direct use as a feeder layer.

MEF Feeder Cells


ESC-Sure™ Fetal Bovine Serum (PBS) is pre-validated for iPSC/ ESC culture to ensure robust cell growth and promotion of pluripotency.

Stem Cell Grade FBS

Products and Services
Support Materials

MEF Feeder Cells

DR4 MEF Feeder Cells

  • Okubo, T., Hayashi, R., Shibata, S., Kudo, Y., Ishikawa, Y., Inoue, S., ... & Nishida, K. (2020). Generation and validation of a PITX2–EGFP reporter line of human induced pluripotent stem cells enables isolation of periocular mesenchymal cells. Journal of Biological Chemistry295(11), 3456-3465.
  • Ruiz-Gutierrez, M., Bölükbaşı, Ö. V., Alexe, G., Kotini, A. G., Ballotti, K., Joyce, C. E., ... & Papapetrou, E. P. (2019). Therapeutic discovery for marrow failure with MDS predisposition using pluripotent stem cells. JCI insight4(12).
  • Wagner, M., Yoshihara, M., Douagi, I., Damdimopoulos, A., Panula, S., Petropoulos, S., ... & Hovatta, O. (2020). Single-cell analysis of human ovarian cortex identifies distinct cell populations but no oogonial stem cells. Nature communications11(1), 1-15.
  • Takahashi, M., & Yamazaki, S. (2019). Generation of a human induced pluripotent stem cell line, IMSUTi002-A-1, harboring the leukemia-specific fusion gene ETV6-RUNX1. Stem cell research40, 101546.
  • Gruzdev, A., Scott, G. J., Hagler, T. B., & Ray, M. K. (2019). CRISPR/Cas9-Assisted Genome Editing in Murine Embryonic Stem Cells. In Mouse Models of Innate ImmunityHumana Press, New York, NY. 1690:1-21.
  • Snijders, K. E., Cooper, J. D., Vallier, L., & Bertero, A. (2019). Conditional Gene Knockout in Human Cells with Inducible CRISPR/Cas9. In: Luo Y. (eds) CRISPR Gene Editing. Methods in Molecular Biology, Humana Press, New York, NY. 1961:185-209.
  • Tan, C. E. H. (2018). Establishing a genetically engineered mouse ES cell line expressing an inducible Xist transgene along chromosome 19 (Doctoral dissertation).
  • Fogarty, N. M., McCarthy, A., Snijders, K. E., Powell, B. E., Kubikova, N., Blakeley, P., ... & Maciulyte, V. (2017). Genome editing reveals a role for OCT4 in human embryogenesis. Nature, 550(7674), 67-73.
  • Molokanova, O., Schönig, K., Weng, S. Y., Wang, X., Bros, M., Diken, M., ... & Eshkind, L. (2017). Inducible knockdown of procollagen I protects mice from liver fibrosis and leads to dysregulated matrix genes and attenuated inflammation. Matrix Biologyhttps://doi.org/10.1016/j.matbio.2017.11.002.
  • Marttila, S. (2017). Establishment and characterisation of new human induced pluripotent stem cell lines and cardiomyocyte differentiation: a comparative view. Master’s Thesis, University of Tampere, May 2017.
  • Honda, A., Kawano, Y., Izu, H., Choijookhuu, N., Honsho, K., Nakamura, T., ... & Sankai, T. (2017). Discrimination of stem cell status after subjecting cynomolgus monkey pluripotent stem cells to naive conversion. Scientific reports, 7, 45285.

For more references, visit our reference page.

CF-1 MEF Feeder Cells

  • Thakurela, S., Sindhu, C., Yurkovsky, E., Riemenschneider, C., Smith, Z. D., Nachman, I., & Meissner, A. (2019). Differential regulation of OCT4 targets facilitates reacquisition of pluripotency. Nature communications10(1), 1-11.
  • Smela, M. P., Sybirna, A., Wong, F. C., & Surani, M. A. (2019). Testing the role of SOX15 in human primordial germ cell fate. Wellcome open research4.
  • Spada, F., Schiffers, S., Kirchner, A., Zhang, Y., Kosmatchev, O., Korytiakova, E., ... & Carell, T. (2019). Oxidative and non-oxidative active turnover of genomic methylcytosine in distinct pluripotent states. BioRxiv, 846584.
  • Kiamehr, M., Klettner, A., Richert, E., Koskela, A., Koistinen, A., Skottman, H., ... & Juuti-Uusitalo, K. (2019). Compromised Barrier Function in Human Induced Pluripotent Stem-Cell-Derived Retinal Pigment Epithelial Cells from Type 2 Diabetic Patients. International journal of molecular sciences20(15), 3773.
  • Barber, K., Studer, L., & Fattahi, F. (2019). Derivation of enteric neuron lineages from human pluripotent stem cells. Nature protocols, 14:1261–1279.
  • Berecz, T., Husvéth-Tóth, M., Mioulane, M., Merkely, B., Apáti, Á., & Földes, G. (2019). Generation and Analysis of Pluripotent Stem Cell-Derived Cardiomyocytes and Endothelial Cells for High Content Screening Purposes. In: Methods in Molecular Biology. Humana Press.
  • Madak-Erdogan, Z., Band, S., Zhao, Y. C., Smith, B. P., Kulkoyluoglu-Cotul, E., Zuo, Q., ... & Kim, S. H. (2019). Free fatty acids rewire cancer metabolism in obesity-associated breast cancer via estrogen receptor and mTOR signaling. Cancer research, canres-2849.
  • Deuse, T., Hu, X., Gravina, A., Wang, D., Tediashvili, G., De, C., ... & Davis, M. M. (2019). Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nature biotechnology, 1.
  • Kiamehr, M. (2019). Induced pluripotent stem cell-derived hepatocyte-like cells: The lipid status in differentiation, functionality, and de-differentiation of hepatic cells. Tampere University Dissertations.
  • Yeom, K. H., Mitchell, S., Linares, A. J., Zheng, S., Lin, C. H., Wang, X. J., ... & Black, D. L. (2018). Polypyrimidine Tract Binding Protein blocks microRNA-124 biogenesis to enforce its neuronal specific expression. bioRxiv, 297515https://doi.org/10.1101/297515
  • Chai, S., Wan, X., Ramirez-Navarro, A., Tesar, P. J., Kaufman, E. S., Ficker, E., ... & Deschênes, I. (2018). Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity. The Journal of Clinical Investigation, 128(3). DOI: 10.1172/JCI94996
  • Oh, Y., Zhang, F., Wang, Y., Lee, E. M., Choi, I. Y., Lim, H., ... & Wu, H. (2017). Zika virus directly infects peripheral neurons and induces cell death. Nature Neuroscience, 20(9), 1209-1212.
  • Kiamehr, M., Viiri, L. E., Vihervaara, T., Koistinen, K. M., Hilvo, M., Ekroos, K., ... & Aalto-Setälä, K. (2017). Lipidomic profiling of patient-specific induced pluripotent stem cell-derived hepatocyte-like cells. Disease Models & Mechanisms, dmm-030841.
  • Wong, K. G., et al. (2017). CryoPause: A New Method to Immediately Initiate Experiments after Cryopreservation of Pluripotent Stem Cells. http://www.cell.com/stem-cell-reports/pdfExtended/S2213-6711(17)30217-5.
  • Cvetkovic, C., et al. (2017). A 3D-printed platform for modular neuromuscular motor units. Microsystems & Nanoengineering, 3, 17015.
  • Kurapati, S., et al. (2017). Role of JNK pathway in varicella-zoster virus lytic infection and reactivation. Journal of Virology, JVI-00640.
  • Kotini, A. G., Chang, C. J., Chow, A., Yuan, H., Ho, T. C., Wang, T., ... & Teruya-Feldstein, J. (2017). Stage-specific human induced pluripotent stem cells map the progression of myeloid transformation to transplantable leukemia. Cell Stem Cell, 20(3), 315-328.
  • Maghen, L., Shlush, E., Gat, I., Filice, M., Barretto, T. A., Jarvi, K., ... & Librach, C. L. (2017). Human umbilical perivascular cells (HUCPVCs): a novel source of mesenchymal stromal-like (MSC) cells to support the regeneration of the testicular niche. Reproduction, 153(1), 85-95.

For more references, visit our reference page..

Neo-resistant MEF Feeder Cells

  • Mansour, A. A., Gonçalves, J. T., Bloyd, C. W., Li, H., Fernandes, S., Quang, D., ... & Gage, F. H. (2018). An in vivo model of functional and vascularized human brain organoids. Nature biotechnology, 36(5), 432. doi:10.1038/nbt.4127
  • Heim, C. N., Fanslow, D. A., & Dann, C. T. (2012). Development of quantitative microscopy-based assays for evaluating dynamics of living cultures of mouse spermatogonial stem/progenitor cells. Biology of reproduction, 87(4), 90-1.
  • Mauney, J. R., Ramachandran, A., Richard, N. Y., Daley, G. Q., Adam, R. M., & Estrada, C. R. (2010). All-trans retinoic acid directs urothelial specification of murine embryonic stem cells via GATA4/6 signaling mechanisms. PloS one, 5(7), e11513.

SNL 76/7 (STO Cell Line)

  • Yang, J., Ryan, D. J., Lan, G., Zou, X., & Liu, P. (2019). In vitro establishment of expanded-potential stem cells from mouse pre-implantation embryos or embryonic stem cells. Nature protocols, 1.
  • Kime, C., Rand, T. A., Ivey, K. N., Srivastava, D., Yamanaka, S., & Tomoda, K. (2015). Practical integration‐free episomal methods for generating human induced pluripotent stem cells. Current protocols in human genetics, 87(1), 21-2.
  • Takahashi, K., Narita, M., Yokura, M., Ichisaka, T., & Yamanaka, S. (2009). Human induced pluripotent stem cells on autologous feeders. PloS one, 4(12), e8067.
  • Park, I. H., & Daley, G. Q. (2009). Human iPS cell derivation/reprogramming. Current protocols in stem cell biology8(1), 4A-1.
  • Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448(7151), 313.
  • Takahashi, K., Okita, K., Nakagawa, M., & Yamanaka, S. (2007). Induction of pluripotent stem cells from fibroblast cultures. Nature protocols, 2(12), 3081.
  • McMahon, A. P., & Bradley, A. (1990). The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell, 62(6), 1073-1085.


  • Chory, E. J., Kirkland, J. G., Chang, C. Y., D'Andrea, V., Gourisankar, S., Dykhuizen, E. J., & Crabtree, G. J. (2019). Inhibition of a Selective SWI/SNF Function Synergizes with ATR Inhibitors in Cancer Cell Killing. bioRxiv, 660456.
  • Lv, Y., Xiao, F. J., Wang, Y., Zou, X. H., Wang, H., Wang, H. Y., ... & Lu, Z. Z. (2019). Efficient gene transfer into T lymphocytes by fiber-modified human adenovirus 5. BMC biotechnology19(1), 23.
  • Paynter, J. M., Chen, J., Liu, X., & Nefzger, C. M. (2019). Propagation and maintenance of mouse embryonic stem cells. In Mouse Cell Culture, vol 1940  (pp. 33-45). Humana Press, New York, NY.
  • Chory, E. J., Calarco, J. P., Hathaway, N. A., Bell, O., Neel, D. S., & Crabtree, G. R. (2019). Nucleosome turnover regulates histone methylation patterns over the genome. Molecular cell, 73(1), 61-72.
  • Gatchalian, J., Malik, S., Ho, J., Lee, D. S., Kelso, T. W., Shokhirev, M. N., ... & Hargreaves, D. C. (2018). A non-canonical BRD9-containing BAF chromatin remodeling complex regulates naive pluripotency in mouse embryonic stem cells. Nature communications, 9(1), 5139.
  • Chory, E. J., Calarco, J. P., Hathaway, N. A., Bell, O., Neel, D. S., & Crabtree, G. R. (2018). Nucleosome Turnover Regulates Histone Methylation Patterns over the Genome. Molecular cell.
  • Marian, C. A., Stoszko, M., Wang, L., Leighty, M. W., de Crignis, E., Maschinot, C. A., ... & Duvall, J. R. (2018). Small Molecule Targeting of Specific BAF (mSWI/SNF) Complexes for HIV Latency Reversal. Cell Chemical Biology
  • Hodges, H. C., Stanton, B. Z., Cermakova, K., Chang, C. Y., Miller, E. L., Kirkland, J. G., ... & Crabtree, G. R. (2017). Dominant-negative SMARCA4 mutants alter the accessibility landscape of tissue-unrestricted enhancers. Nature Structural & Molecular Biology, 1.

  • Braun, S. M. G., Kirkland, J. G., Chory, E. J., Husmann, D., Calarco, J. P., & Crabtree, G. R. (2017). Rapid and reversible epigenome editing by endogenous chromatin regulators. Nature Communications, 8, 560.http://doi.org/10.1038/s41467-017-00644-y.s

  • Dykhuizen, E. C., Carmody, L. C., & Tolliday, N. J. (2017). High-Throughput Screening of Small Molecule Transcriptional Regulators in Embryonic Stem Cells Using qRT-PCR. In Epigenetics and Gene Expression in Cancer, Inflammatory and Immune Diseases (pp. 81-95). Humana Press, New York, NY.

  • Stanton, B. Z., Hodges, C., Calarco, J. P., Braun, S. M. G., Ku, W. L., Kadoch, C., … Crabtree, G. R. (2017). SMARCA4 ATPase mutations disrupt direct eviction of PRC1 from chromatin. Nature Genetics49(2), 282–288. http://doi.org/10.1038/ng.3735

For more references, visit our reference page..

Have Questions?

An Applied StemCell technical expert is happy to help, contact us today!