Pluripotency Markers (Protein)

ESC/iPSC Characterization Kit (Antibody Pluripotency Marker Kit)

Applied StemCell’s Embryonic Stem Cell (ESC) / Induced Pluripotent Stem Cell (iPSC) Characterization Kit is designed for users to analyze the pluripotent status of ESCs and iPSCs by analyzing marker protein expression. The kits are ready-to-use and provided a fast, convenient and sensitive method for confirming pluripotency in ESCs and iPSCs.

Applied StemCell's Pluripotency Marker Kit includes:

  1. Easy-to-use primary and secondary antibodies with well-established pluripotency markers to confirm the pluripotency of human or mouse ESC, iPSC lines.
  2. Fixation, Permeabilization, Blocking, and Mounting Reagents
  3. DNA counterstain
  4. Alkaline Phosphatase activity assay

Markers used in the kits:

  • Human: OCT4, SOX2, SSEA4, TRA-1-60, TRA-1-81
  • Mouse: Oct4, Sox2, SSEA1


  • High Sensitivity:  Partially differentiated hiPSC clones can be detected.
  • Convenient: The ready-to-user kits contain all buffers and solutions needed to perform immunocytochemical and enzyme activity analysis.

Applied StemCell also offers mRNA Pluripotency Marker Kits which include primer sets to analyze expression of these markers as well as a positive control primer set.


Technical Details

The Pluripotency Marker Kit contains commonly used marker antibodies in prediluted, optimized concentration for immunofluorescence staining.

Oct4 and Sox2 are transcription factors highly expressed in undifferentiated both human and mouse ESCs/iPSCs and embryonic germ cells (EGC). SSEA-1 is a globoseries carbohydrate antigen present on the surface of murine ESC, but it is not detected in human pluripotent cells. SSEA4, TRA-1-60, TRA-1-81 are surface proteins specific for human ESCs/iPSCs.

In addition the kits provide a rapid and sensitive alkaline phosphatase (AP) activity test. AP is a stem cell membrane marker and elevated expression of AP is associated with the pluripotent status of ESCs/iPSCs.





Applied StemCell's cited/ published journal articles:

Anti-SOX2 antibody:

  • Wang, T., Choi, E., Monaco, M. C. G., Major, E. O., Medynets, M., & Nath, A. (2015). Direct Induction of Human Neural Stem Cells from Peripheral Blood Hematopoietic Progenitor Cells. Journal of Visualized Experiments : JoVE, (95), 52298. Advance online publication.

Anti-TRA-1-60 antibody:

  • Ramalingam, S., London, V., Kandavelou, K., Cebotaru, L., Guggino, W., Civin, C., & Chandrasegaran, S. (2013). Generation and Genetic Engineering of Human Induced Pluripotent Stem Cells Using Designed Zinc Finger Nucleases. Stem Cells and Development, 22(4), 595–610.

Mouse ES-iPSC Characterization kit:

Human ES-iPSC Characterization kit:

  • Tang, R., Jing, L., Willard, V. P., Wu, C. L., Guilak, F., Chen, J., & Setton, L. A. (2018). Differentiation of human induced pluripotent stem cells into nucleus pulposus-like cells. Stem Cell Research & Therapy, 9(1), 61.
  • Marei, H. E., Althani, A., Lashen, S., Cenciarelli, C., & Hasan, A. (2017). Genetically unmatched human iPSC and ESC exhibit equivalent gene expression and neuronal differentiation potential. Scientific Reports, 7(1), 17504.
  • Choi, J., Lee, S., Clement, K., Mallard, W., Tagliazucchi, G. M., Lim, H., … Hochedlinger, K. (2015). A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs. Nature Biotechnology, 33(11), 1173–1181.
  • Martí Gutiérrez, N. (2015). Doctoral Thesis, Departamento de Bioquímica y Biología Molecular, Universidad de Valencia.
  • Fleming, W. H., & Hirschman, S. Z. (2015). U.S. Patent Application No. 14/410,508.
  • Wang, D. (2015). Individualized Cardiovascular Medicine: Identifying New Mechanisms to Inhibit the Development of Myointimal Hyperplasia.
  • Cassidy, L., Diaz, R., Chen-Tsai, R. Y., & Seigel, G. M. (2014). Comparative analysis of ABCG2+ and ABCG2-retinoblastoma cells in three-dimensional culture. Edorium Journal of Otolaryngology, 4, 1-7.
  • Li, Y., Wu, W.-H., Hsu, C.-W., Nguyen, H. V., Tsai, Y.-T., Chan, L., … Tsang, S. H. (2014). Gene Therapy in Patient-specific Stem Cell Lines and a Preclinical Model of Retinitis Pigmentosa With Membrane Frizzled-related Protein Defects. Molecular Therapy, 22(9), 1688–1697.
  • Yagyu, S., Hoyos, V., Del Bufalo, F., & Brenner, M. K. (2015). An inducible caspase-9 suicide gene to improve the safety of therapy using human induced pluripotent stem cells. Molecular Therapy, 23(9), 1475-1485.
  • Li, Y., Tsai, Y.-T., Hsu, C.-W., Erol, D., Yang, J., Wu, W.-H., … Tsang, S. H. (2012). Long-term Safety and Efficacy of Human-Induced Pluripotent Stem Cell (iPS) Grafts in a Preclinical Model of Retinitis Pigmentosa. Molecular Medicine, 18(1), 1312–1319.
  • Jing, L., Christoforou, N., Leong, K. W., Setton, L. A., & Chen, J. (2012). Differentiation potential of human induced pluripotent stem cells (iPSCs) to nucleus pulposus-like cells in vitro. Global Spine Journal, 2(1_suppl), s-0032.
  • Deuse, T., Seifert, M., Phillips, N., Fire, A., Tyan, D., Kay, M., ... & Volk, H. D. (2011). Immunobiology of naive and genetically modified HLA-class-I-knockdown human embryonic stem cells. J Cell Sci, 124(17), 3029-3037.
  • Deuse, T., Hua, X., Wang, D., Maegdefessel, L., Heeren, J., Scheja, L., … Schrepfer, S. (2014). Dichloroacetate prevents restenosis in preclinical animal models of vessel injury. Nature, 509(7502), 641–644.
  • Wang, J., Xie, G., Singh, M., Ghanbarian, A. T., Raskó, T., Szvetnik, A., ... & Schumann, G. G. (2014). Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature, 516(7531), 405.
  • Wang, T., Choi, E., Monaco, M. C. G., Campanac, E., Medynets, M., Do, T., … Nath, A. (2013). Derivation of Neural Stem Cells from Human Adult Peripheral CD34+ Cells for an Autologous Model of Neuroinflammation. PLoS ONE, 8(11), e81720.
  • Zamule, S. M., Coslo, D. M., Chen, F., & Omiecinski, C. J. (2011). Differentiation of Human Embryonic Stem Cells along a Hepatic Lineage. Chemico-Biological Interactions, 190(1), 62–72.
  • Sun, N., & Zhao, H. (2014). Seamless correction of the sickle cell disease mutation of the HBB gene in human induced pluripotent stem cells using TALENs. Biotechnology and bioengineering, 111(5), 1048-1053.
  • Tachibana, M., Amato, P., Sparman, M., Gutierrez, N. M., Tippner-Hedges, R., Ma, H., … Mitalipov, S. (2013). Human Embryonic Stem Cells Derived by Somatic Cell Nuclear Transfer. Cell, 153(6), 1228–1238.
Catalog ID#Product Name SizePriceQTY
Price: $84.00
Price: $84.00
Price: $84.00
Price: $84.00
Price: $84.00
Price: $84.00
Price: $84.00
Price: $200.00
Price: $290.00
Price: $200.00

10 Items

per page