• Cancer Research

Cancer Research

We know the ins-and-outs of genome editing in cancer cell lines having generated 1300+ cell line models in >200 distinct cell lines. ASC provides expert, high quality enabling tools for cancer research such as precision genome editing to generate physiologically relevant immuno-oncology cell line models and pre-engineered/ isogenic cell lines for early stage drug toxicity screening, generating your own isogenic cell lines and more.

  • Multi-approach strategies using complementary CRISPR/Cas9, TARGATT™, and lentiviral technologies
  • Engineer a variety of genetic modifications in a wide range of mammalian cell lines
  • Customized deliverables and downstream assay/screening services.
  • Short turnaround time (as fast as 2 months)
Products and Services
Catalog ID#Product Name SizePriceQTY
$6,000.00
$4,000.00
$5,000.00
$5,000.00

22 Items

per page
Technical Details

CRISPR/Cas9 edited cell line models are an invaluable in vitro toolkit for studying genes involved in immunology and oncology, cancer disease models, and for high throughput screening of drug candidates. Leverage our extensive expertise in genome editing from >1300 successful projects in 200+ distinct mammalian cell lines with a >97% success rate from different species: hard-to-transfect cells, hematopoietic/ blood lineage cells, slow growing cell lines, adherent/ suspension cells, stem cells and correct mutations in disease cell lines.

Customized deliverables: 

  • Footprint-free genome editing
  • Custom heterozygous/ homozygous clones
  • And point mutations without silent mutations

List of genetic modifications we can generate in your cell lines:

Gene knockout (KO): frame shift; fragment excision, stop cassette insertion, double KO

Gene editing/ correction

Gene knock-in (KI): point mutation, reporter gene, small/ large fragment insertion; locus-specific/ safe harbor locus

Gene fusion/ translocation

Controlled gene expression models: gene overexpression; conditional/ inducible gene expression; promoter modifications

Removal of viral sequences

Master cell line generation

Gene replacement; gene therapy

Don’t see a particular model you are interested in? Contact us to learn about the full scope of our expertise and get a cell line model engineered precisely to your project requirements.

Partial list of successfully modified mammalian cell lines# by ASC that are used in immuno-oncology research:

Cell

Species

Tissue

Cell Type

Disease

A375 

Human

Skin

Epithelial

Malignant melanoma

A549

Human

Lung

Epithelial

Carcinoma

HCT116

Human

Colon

Epithelial

Colorectal carcinoma

HEK293

Human

Embryonic kidney

Epithelial

 

HEK293T

Human

Embryonic kidney

Epithelial

 

HeLa

Human

Cervix

Epithelial

Cervical cancer

TF-1

human

Bone marrow

Erythroblast

Erythroleukemia

K562

Human

Bone Marrow

Lymphoblast

Chronic myelogenous leukemia

Jurkat

Human

Peripheral blood

T lymphocyte

Acute T cell leukemia

T2

Human

Blood lineage

Lymphocyte

 

MOLM-13

Human

Peripheral blood

Monocyte-like

Acute myeloid leukemia

HepG2

Human

Liver

Epithelial

Hepatocellular carcinoma

HT1080

Human

Connective Tissue

Epithelial

Fibrosarcoma

RKO

Human

Colon

Epithelial

Carcinoma

SH-SY5Y

Human

Bone Marrow

Epithelial

Neuroblastoma

U-2 OS

Human

Bone

Epithelial

Osteosarcoma

22RV1

Human

Prostrate

Epithelial

Carcinoma

786-0

Human

Kidney

Epithelial

Renal cell adenocarcinoma

AGS

Human

Stomach

Epithelial

Gastric adenocarcinoma

BCWM-1*

Human

Bone marrow

Lymphoplasmacytic

Waldenstrom macroglobulinemia

CL-40

Human

Colon

Epithelial

Colon carcinoma

DLD-1

Human

Colon

Epithelial

Colorectal adenocarcinoma

EML

Mouse

Bone marrow

Basophil

Normal

FTC-133

Human

Thyroid

Thyrocytes

Follicular thyroid carcinoma

H2030

Human

Lung

Epithelial

Non-small cell lung cancer

H716

Human

Cecum

Epithelial

Colorectal carcinoma

HAC15

Human

Adrenal

Epithelial-like

Carcinoma

HBE

Human

Lung

Epithelial

Lung cancer

HMC1.2

Human

Peripheral blood

Mast cell

Mast cell leukemia

HT29

Human

Colon

Epithelial

Colorectal carcinoma

HUDEP-2

Human

Umbilical cord

Erythroid progenitor

Normal

Huh7

Human

Liver

Epithelial

Hepatocellular carcinoma

Jurkat (Clone E6-1)

Human

Peripheral blood

T lymphocyte

Acute T cell leukemia

JVM2

Human

Peripheral blood

Lymphoblast

Mantle Cell Lymphoma

KG-1

Human

Bone

Lymphoblast

Acute myelogenou leukemia

KHYG-1*

Human

Peripheral blood

T lymphocyte

Natural killer cell leukemia

KYSE-270

Human

Esophagus

Epithelioid

Esophageal squamous cell carcinoma

LCL-8664*

Human

 

B lymphocyte

Lymphoma

LNCaP

Human

Prostrate

Epithelial

Prostrate adenocarcinoma

MALME-3M

Human

Lung (metastatic)

Fibroblast

Malignant melanoma

MCF7

Human

Mammary gland

Epithelial

Adenocarcinoma

MKN1

Human

Lymph node

Epithelial

Gastric adenosquamous carcinoma

MWCL-1*

Human

Bone marrow

Lymphoplasmacytic

Waldenstrom macroglobulinemia

PANC1

Human

Pancreas/duct

Epithelial

Epithelioid carcinoma

PC-3M

Human

Bone

Epithelial

Prostrate carcinoma

RAW 264.7

Mouse

Ascites

Macrophage

Abelson murine leukemia virus-induced tumor

SBC-5

Human

Lung

 

Small cell lung carcinoma

SCC-35

Human

 

Squamous cells

Head and neck cancer

SH-SY5Y (with eGFP)

Human

Bone Marrow

Epithelial

Neuroblastoma

Sp2/0-Ag14

Mouse

Spleen

B lymphocyte

Normal

T47D

Human

Mammary gland

Epithelial

Ductal carcinoma

T84

Human

Colon

Epithelial

Colorectal carcinoma

TC32

Human

Bone

 

Neuroectodermal carcinoma

TOV-112D

Human

Ovary

Epithelial

Primary adenocarcinoma

U937

Human

Lymphocyte

Monocyte

Histiocytic lymphoma

B16-F10

Mouse

Skin

Spindle/Epithelial-like

Melanoma

CT-26

Mouse

Colon

Fibroblast

Carcinoma

Mc-38

Mouse

Colon

Epithelial

Colon adenocarcinoma

mEERL

Mouse

Lung

Epithelial

Oropharyngeal squamous cell carcinoma

Neuro-2a

Mouse

Brain

Neuroblast

Neuroblastoma

Renca

Mouse

Kidney

Epithelial

Renal adenocarcinoma

RCS

Rat

 

Chondrocytes

Chondrosarcoma

* Inquire for details; # cell lines purchased by clients on ASC on behalf of clients.

Don’t see a cell line you are looking for? Ask for details. We always validate the cell lines in our cell line engineering workflow.

Applications:

  • Modeling cancer disease for understanding genetic role in cancer progression
  • Pharmacogenomic studies
  • Drug efficacy and toxicity screening
  • Drug combination studies
  • Antibody validation

Choosing the right genome editing technology:

Applied StemCell uses two complementary genome editing technologies to generate advanced cell line and animal models very efficiently and effectively: the CRISPR/Cas9 technology and our propriety site-specific gene integration technology, TARGATT™ for large fragment (up to 22 kb) knock-in into a safe harbor locus.

Project Purpose

CRISPR/Cas9

TARGATT™

Knock-Out (KO)

Yes

 

Point Mutation

Yes

 

Conditional KO

Yes

 

Knock-In

(<200 Nucleotide ssODN Donor)

Yes

 

Knock-In Transgenes in

Safe Harbor Loci (>2kb)

Challenging

(but limitations on size)

Yes

 (up to 20kb)

Knock-In

 (Plasmid DNA)

Challenging

(but limitations on size)

Yes

 (2 steps: KI docking site; KI transgene) 

Publications

Cell Line Models:  Knock-Out, Knock-in, Point Mutation

  • Colomar-Carando, N., Meseguer, A., Jutz, S., Herrera-Fernández, V., Olvera, A., Kiefer, K., ... & Vicente, R. (2018). Zip6 Transporter Is an Essential Component of the Lymphocyte Activation Machinery. The Journal of Immunology, ji1800689.
  • Tanic, J. (2018). A Role for Adseverin in the Invasion and Migration of MCF7 Breast Adenocarcinoma Cells (Doctoral dissertation).
  • Lizarraga, S. B., Maguire, A. M., Ma, L., van Dyck, L. I., Wu, Q., Nagda, D., ... & Cowen, M. H. (2018). Human neurons from Christianson syndrome iPSCs reveal allele-specific responses to rescue strategies. bioRxiv, 444232.
  • Tanaka, H., Kondo, K., Chen, X., Homma, H., Tagawa, K., Kerever, A., ... & Fujita, K. (2018). The intellectual disability gene PQBP1 rescues Alzheimer’s disease pathology. Molecular Psychiatry, 1.
  • Yin, Y., Garcia, M. R., Novak, A. J., Saunders, A. M., Ank, R. S., Nam, A. S., & Fisher, L. W. (2018). Surf4 (Erv29p) binds amino-terminal tripeptide motifs of soluble cargo proteins with different affinities, enabling prioritization of their exit from the endoplasmic reticulum. PLoS biology, 16(8), e2005140
  • Selvan, N., George, S., Serajee, F. J., Shaw, M., Hobson, L., Kalscheuer, V. M., ... & Schwartz, C. E. (2018). O-GlcNAc transferase missense mutations linked to X-linked intellectual disability deregulate genes involved in cell fate determination and signaling. Journal of Biological Chemistry, jbc-RA118.

  • Smalley, E. (2018). FDA warns public of dangers of DIY gene therapy. https://doi.org/10.1038/nbt0218-119

  • Chai, S., Wan, X., Ramirez-Navarro, A., Tesar, P. J., Kaufman, E. S., Ficker, E., ... & Deschênes, I. (2018). Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity. The Journal of clinical investigation128(3).

  • Boi, S., Ferrell, M. E., Zhao, M., Hasenkrug, K. J., & Evans, L. H. (2018). Mouse APOBEC3 expression in NIH 3T3 cells mediates hypermutation of AKV murine leukemia virus. Virology518, 377-384. https://doi.org/10.1016/j.virol.2018.03.014.

  • Molinski, S. V., et al. (2017). Orkambi® and amplifier co‐therapy improves function from a rare CFTR mutation in gene‐edited cells and patient tissue. EMBO Molecular Medicine, e201607137.

  • Petrovic, P. B. (2017). Myosin Phosphatase Rho-interacting Protein Regulates DDR1-mediated Collagen Tractional Remodeling (Doctoral dissertation, University of Toronto (Canada)).

  • Peng, L., Zhang, H., Hao, Y., Xu, F., Yang, J., Zhang, R., ... & Chen, C. (2016). Reprogramming macrophage orientation by microRNA 146b targeting transcription factor IRF5. EBioMedicine14, 83-96.

  • Hu, J. K., Crampton, J. C., Locci, M., & Crotty, S. (2016). CRISPR-mediated Slamf1Δ/Δ Slamf5Δ/Δ Slamf6Δ/Δ triple gene disruption reveals NKT cell defects but not T follicular helper cell defects. PloS one11(5), e0156074.

  • Smalley, E. (2016). CRISPR mouse model boom, rat model renaissance. Nature Biotechnology. 34, 893–894.

  • Baker, M. (2014). Gene editing at CRISPR speed. Nature biotechnology32(4), 309-313.

Isogenic Cell Lines

  • Colomar-Carando, N., Meseguer, A., Jutz, S., Herrera-Fernández, V., Olvera, A., Kiefer, K., ... & Vicente, R. (2018). Zip6 Transporter Is an Essential Component of the Lymphocyte Activation Machinery. The Journal of Immunology, ji1800689.
Have Questions?

An Applied StemCell technical expert is happy to help, contact us today!