• TARGATT™ Genome Editing

TARGATT™ Genome Editing

Applied StemCell’s proprietary TARGATT™ technology, enables site-specific, stable integration of large DNA fragments into a safe harbour locus more efficiently and faster, with guaranteed transgene expression. The TARGATT™ gene-editing platform is versatile and can generate large fragment knock-in animal or cell line models. This technology circumvents problems associated with random integration such as position effect, and gene silencing or instability due to integration of multiple copies of the transgene. Applications for TARGATT™ models: Transgene overexpression models, reporter gene knock-in, conditional knock-in, inducible expression, Cre-driver lines and humanized animal models.

TARGATT™ Genome Editing Categories

TARGATT™ Site Specific
Knock-in Mouse

Fast and Reliable! Site-specific knock-in mouse model generation service for large transgene insertion.

TARGATT™ Site Specific
Knock-in Mouse

TARGATT™ Site-Specific
Knock-in Rat

TARGATT™ Site-Specific Knock-in Rat (H11) model generation service for large fragment gene insertion into Sprague-Dawley rats.

TARGATT™ Site-Specific
Knock-in Rat

TARGATT™ Site-Specific
Knock-in Cell Line Service

Efficient generation of stable, site-specific, gene knock-in in mammalian cell lines and stem cells.

TARGATT™ Site-Specific
Knock-in Cell Line Service

TARGATT™ High Resolution Protein Screening

Site-specific, isogenic cell libraries for consistent expression of gene/protein variants for genome-wide screening and protein evolution.

TARGATT™ High Resolution Protein Screening

Products and Services

14 Items

per page
Support Materials
FAQs
Can I create models to overexpress a gene of interest?
Can I use TARGATT™ system to create transgenic models with tissue-specific gene expression?
What promoters are used to drive gene expression?
What is the specific site that my gene of interest will be integrated into?
Besides H11 and Rosa26, can gene be inserted at other loci?
Can I integrate a reporter gene? What kind of reporter genes do you recommend?
What is the maximum size of a gene you can insert? Will the efficiency of your system be affected if the gene is too large?
Why does the TARGATT™ knock-in system have high efficiency?
How many copies of the gene will be inserted into the genome?
Do you have TARGATT™ technology available for Knock-in cell lines?
Technical Details

Advantages of TARGATT™ Technology:

  • High integration efficiency (up to 40%)
  • Large transgene knock-in (up to 22 kb)
  • Reduced time and cost
  • Guaranteed, high level expression of the transgene
  • Site-specificity allows a precise comparison of the effects of the transgenes among different lines
  • Site-specific knock-in at pre-selected locus overcomes challenges associates with random integration:
  • Eliminates position effect
  • Integration at intergenic region ensures that no internal genes are interrupted
  • Single copy gene integration eliminates repeat-induced gene silencing and genomic instability


Choosing the right genome editing technology: Applied StemCell uses two complementary genome editing technologies to generate advanced cell line and animal models very efficiently and effectively: the CRISPR/Cas9 technology and our propriety site-specific gene integration technology, TARGATT™ for large fragment (up to 22 kb) knock-in into a safe harbor locus.

Project Purpose

CRISPR/Cas9

TARGATT™

Knock-Out (KO)

Yes

 

Point Mutation

Yes

 

Conditional KO

Yes

 

Knock-In

(<200 Nucleotide ssODN Donor)

Yes

 

Knock-In Transgenes in

Safe Harbor Loci (>2kb)

Challenging

(but limitations on size)

Yes

 (up to 22kb)

Knock-In

 (Plasmid DNA)

Challenging

(but limitations on size)

Yes

 (2 steps: KI docking site; KI transgene) 

Publications

Description of the technology

Commentary, comparison with other transgenic methods

Tet inducible mice generated by TARGATT™

  • Fan, X., Petitt, M., Gamboa, M., Huang, M., Dhal, S., Druzin, M. L., ... & Nayak, N. R. (2012). Transient, inducible, placenta-specific gene expression in mice. Endocrinology, 153(11), 5637-5644.

Advantage of Hipp11 (H11) locus

  • Hippenmeyer, S., Youn, Y. H., Moon, H. M., Miyamichi, K., Zong, H., Wynshaw-Boris, A., & Luo, L. (2010). Genetic mosaic dissection of Lis1 and Ndel1 in neuronal migration. Neuron, 68(4), 695-709.

Application for mice generated by TARGATT™

  • Matharu, N., Rattanasopha, S., Tamura, S., Maliskova, L., Wang, Y., Bernard, A., ... & Ahituv, N. (2018). CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science, eaau0629.
  • Chen-Tsai, R. Y. (2019). Using TARGATT™ Technology to Generate Site-Specific Transgenic Mice. In Microinjection (pp. 71-86). Humana Press, New York, NY
  • Barrett, R. D., Laurent, S., Mallarino, R., Pfeifer, S. P., Xu, C. C., Foll, M., ... & Hoekstra, H. E. (2018). The fitness consequences of genetic variation in wild populations of mice. bioRxiv, 383240.
  • Ibrahim, L. A., Huang, J. J., Wang, S. Z., Kim, Y. J., Li, I., & Huizhong, W. (2018). Sparse Labeling and Neural Tracing in Brain Circuits by STARS Strategy: Revealing Morphological Development of Type II Spiral Ganglion Neurons. Cerebral Cortex, 1-14.
  • Kumar, A., Dhar, S., Campanelli, G., Butt, N. A., Schallheim, J. M., Gomez, C. R., & Levenson, A. S. (2018). MTA 1 drives malignant progression and bone metastasis in prostate cancer. Molecular oncology.
  • Jang, Y., Broun, A., Wang, C., Park, Y. K., Zhuang, L., Lee, J. E., ... & Ge, K. (2018). H3. 3K4M destabilizes enhancer H3K4 methyltransferases MLL3/MLL4 and impairs adipose tissue development. Nucleic acids researchhttps://doi.org/10.1093/nar/gky982
  • Tang, Y., Kwon, H., Neel, B. A., Kasher-Meron, M., Pessin, J., Yamada, E., & Pessin, J. E. (2018). The fructose-2, 6-bisphosphatase TIGAR suppresses NF-κB signaling by directly inhibiting the linear ubiquitin assembly complex LUBAC. Journal of Biological Chemistry, jbc-RA118.
  • Chen, M., Geoffroy, C. G., Meves, J. M., Narang, A., Li, Y., Nguyen, M. T., ... & Elzière, L. (2018). Leucine Zipper-Bearing Kinase Is a Critical Regulator of Astrocyte Reactivity in the Adult Mammalian CNS. Cell Reports, 22(13), 3587-3597
  • Kido, T., Sun, Z., & Lau, Y.-F. C. (2017). Aberrant activation of the human sex-determining gene in early embryonic development results in postnatal growth retardation and lethality in mice. Scientific Reports7, 4113. http://doi.org/10.1038/s41598-017-04117-6.
  • Nouri, N., & Awatramani, R. (2017). A novel floor plate boundary defined by adjacent En1 and Dbx1 microdomains distinguishes midbrain dopamine and hypothalamic neurons. Development144(5), 916-927.
  • Li, K., Wang, F., Cao, W. B., Lv, X. X., Hua, F., Cui, B., ... & Yu, J. M. (2017). TRIB3 Promotes APL Progression through Stabilization of the Oncoprotein PML-RARα and Inhibition of p53-Mediated Senescence. Cancer Cell31(5), 697-710.
  • Jiang, T., Kindt, K., & Wu, D. K. (2017). Transcription factor Emx2 controls stereociliary bundle orientation of sensory hair cells. eLife, 6, e23661.
  • Booze, M. L., Hansen, J. M., & Vitiello, P. F. (2016). A Novel Mouse Model for the Identification of Thioredoxin-1 Protein Interactions. Free Radical Biology & Medicine99, 533–543. http://doi.org/10.1016/j.freeradbiomed.2016.09.013.
  • Feng, D., Dai, S., Liu, F., Ohtake, Y., Zhou, Z., Wang, H., ... & Hayat, U. (2016). Cre-inducible human CD59 mediates rapid cell ablation after intermedilysin administration. The Journal of clinical investigation, 126(6), 2321-2333.
  • Sun, N., Yun, J., Liu, J., Malide, D., Liu, C., Rovira, I. I., … Finkel, T. (2015). Measuring in vivo mitophagy. Molecular Cell60(4), 685–696. http://doi.org/10.1016/j.molcel.2015.10.009.
  • Devine, W. P., Wythe, J. D., George, M., Koshiba-Takeuchi, K., & Bruneau, B. G. (2014). Early patterning and specification of cardiac progenitors in gastrulating mesoderm. eLife3, e03848. http://doi.org/10.7554/eLife.03848.
  • Fogg, P. C. M., Colloms, S., Rosser, S., Stark, M., & Smith, M. C. M. (2014). New Applications for Phage Integrases. Journal of Molecular Biology426(15), 2703–2716. http://doi.org/10.1016/j.jmb.2014.05.014.
  • Chen-Tsai, R. Y., Jiang, R., Zhuang, L., Wu, J., Li, L., & Wu, J. (2014). Genome editing and animal models. Chinese science bulletin59(1), 1-6.
  • Park, K.-E., Park, C.-H., Powell, A., Martin, J., Donovan, D. M., & Telugu, B. P. (2016). Targeted Gene Knockin in Porcine Somatic Cells Using CRISPR/Cas Ribonucleoproteins. International Journal of Molecular Sciences17(6), 810. http://doi.org/10.3390/ijms17060810.
  • Guenther, C. A., Tasic, B., Luo, L., Bedell, M. A., & Kingsley, D. M. (2014). A molecular basis for classic blond hair color in Europeans. Nature Genetics46(7), 748–752. http://doi.org/10.1038/ng.2991.
  • Villamizar, C. A. (2014). Characterization of the vascular pathology in the acta2 r258c mouse model and cerebrovascular characterization of the acta2 null mouse. UT GSBS Dissertations and These (Open Access)Paper 508 (2014)
Have Questions?

An Applied StemCell technical expert is happy to help, contact us today!