Services

Knock In Mice, Genome Editing

  • Stem Cell Services

    • iPSC Generation Services


      Let the iPSC expert generate high-quality, induced pluripotent stem cell (iPSC) lines and derived physiologically relevant cell line models for your basic research, drug discovery, drug screening, and preclinical cell regeneration projects:

      • Highly optimized protocols with high reprogramming efficiency (>95% success rate)
      • From healthy/diseased samples
      • iPSC generation from PBMCs, fibroblast, HSC, MSCs, CD34+ cord blood, urine, and more
      • integration-free (episomal/ mRNA/ viral-based) or retroviral reprogramming
      • Feeder-free protocols; optional feeder-dependent protocols available
      • iPSCs characterized for morphology and pluripotency markers. Additional characterization such as G-banding, RT-PCR, STR profiling, directed-differentiation are also available.   
      iPSC Generation Services Categories

      iPSC Generation
      from Patient Samples

      Efficient iPSC generation from healthy/ disease patient samples for cell line/ disease modeling, drug discovery and drug/ neurotoxicity screening.

      iPSC Generation
      from Patient Samples

      Allogenic and Immunocompatible
      iPSC Generation

      Full service for HLA-matched allogenic iPSC generation and CRISPR gene editing to engineer HLA-knockouts for developing non-immunogenic iPSCs.

      Allogenic and Immunocompatible
      iPSC Generation

    • Stem Cell Genome Editing


      ASC is one of the first, licensed service providers of iPSC and CRISPR/Cas9 technologies, and provides the best iPSC disease modeling service on the market.

      • >98% success rate in genetically engineering >500 unique iPS cell line models
      • iPSC genome editing using healthy/ diseased donors
      • Customizable deliverables: Heterozygous/ homozygous mutations; Point mutations with/ without silent mutations
      • Footprint-free, feeder-free transfection and iPSC culture protocols
      • Use your iPSC lines or any of our fully characterized control iPSC lines derived from cord blood (male: ASE-9109; female: ASE-9110) or female fibroblasts (ASE-9209) for CRISPR gene editing
      • Isogenic control lines for reliable experiments
      • Full range of downstream iPSC differentiation and characterization services
    • iPSC Characterization Services: Check Pluripotency Markers, Chromosomal Abnormality, STR, & WGS


      Stringent molecular and functional assays are necessary to evaluate pluripotency and to rule-out genetic aberrations due to reprogramming and stress from in vitro culture in iPSC lines. Loss of genetic integrity can affect desired cellular phenotype and compromise interpretation and translation of results to a clinical setting.

      ASC offers comprehensive services needed to completely characterize your human and mouse pluripotent stem cell lines (PSCs):

      • Pluripotency and lineage-specific marker immunostaining
      • Karyotyping (Chromosome counting, G-banding, array analysis)
      • qPCR, RNA-seq
      • Trilineage differentiation potential: embryoid body (EB) formation, qRT-PCR 
      • HLA typing, whole genome sequencing (WGS), single tandem repeat (STR) genotyping, copy number variations (CNV) and more
    • Safe Harbor Locus Master iPSC Genome Editing Service


      Custom “Master” iPSC Cell Line Generation using TARGATT™ technology! The TARGATT™ Master Human iPSC Line contains an attP “docking site” at the hROSA26 safe harbor genomic locus. Any gene of interest can be stably inserted at the docking site using a corresponding “attB” containing TARGATT™ donor plasmid, with guaranteed gene expression. The efficiency of this phiC31 integrase-mediated recombination is up to 100% efficiency with drug selection and up to 30% without drug selection.

      Our cell line model generation experts can also engineer your safe harbor locus knock-in iPSC lines using CRISPR/Cas9 for a multi-technology approach to generate a cell line model for your specific research needs.

    • Microglia & Neural Stem Cell Differentiation


      The true potential of iPSCs and ESCs rest in its directed differentiation to different somatic lineages. As part of our comprehensive stem cell service platform, researchers can leverage our expertise in stem cell technologies and our cost-effective, reliable Stem Cell Differentiation Services for their developmental biology, disease mechanisms, and drug discovery research.

      • Differentiate your patient-derived iPSCs into microglia and self-renewing, multipotent neural stem cells (NSCs) and further to neurons and glial cells.
      • High differentiation efficiency and cell purity
      • Cells fully characterized for microglia and NSC biomarkers

      Also, avail our upstream iPSC generation  and downstream cell-based assays  services to analyze your differentiated cells or for drug screening applications.

      Microglia and Neural Stem Cell Differentiation Categories

      Microglia
      Differentiation
      Service

      iPSC-derived microglial cells from your healthy/patient or genetically modified iPSCs.

      Microglia
      Differentiation
      Service

      Astrocytes
      Differentiation
      Service

      Custom service to differentiate your iPSCs into NSCs and astrocytes progenitors, along with optimized protocols for culturing mature astrocytes.

      Astrocytes
      Differentiation
      Service

      Motor/Cortical
      Neuron
      Differentiation

      Differentiate your iPSCs to NSCs further into motor/ cortical neurons. Differentiate iPSCs from various sources into cortical neurons.

      Motor/Cortical
      Neuron
      Differentiation

      Dopaminergic Neuronal
      Cell Line

      Customized service to differentiate your iPSCs into NSCs and further into midbrain dopaminergic (DA) neuronal precursors.

      Dopaminergic Neuronal
      Cell Line

      Oligodendrocytes
      Differentiation
      Service

      Applied StemCell provides a fully customized service to differentiate your iPSCs into NScs and further into oligodendrocytes precursors.

      Oligodendrocytes
      Differentiation
      Service

    • T Cell, NK Cell Differentiation


      iPSC-derived T cells, NK cells, dendritic cells and others provide a next generation toolset for understanding cancer and disease pathology as well as developing successful immunotherapies (adoptive therapies like CAR-T, CAR-NK, TCR-T and more). Applied StemCell with its world-class comprehensive stem cell platform which includes iPSC generation, genome editing and differentiation, can differentiate your iPSCs into CD34+ hematopoietic lineage progenitor cells and further into high-quality lineage committed immune cells: CD8+ T cells, NK cell, dendritic cells, monocytes, and more. These cells are ideal for immunotherapy research for cancer and immune disorders as well as to develop complex co-culture models to screen drugs and understand immune cell activation and function.

    • Cardiomyocytes Differentiation


      Applied StemCell, Inc. provides a comprehensive range of service to differentiate your iPSCs into cardiomyocytes using our proprietary induction protocol and reagents. We deliver ready to use, highly pure (>90%), functional cardiomyocytes. These differentiated cells provide a highly desirable in vitro platform for high content toxicity and drug screening and as a feasible alternative to animal and embryonic stem cell models. 

      We can generate differentiated cardiomyocytes from your own pluripotent cell lines derived from healthy or disease iPSCs.

    • Hepatocytes Differentiation


      Applied StemCell provides custom differentiation of your induced pluripotent stem cells (iPSCs) into high-quality hepatocytes for developing liver disease models, discovering therapeutic treatments, drug targets, and understanding drug induced hepatotoxicity.

      Using our proprietary induction protocol and reagents, we can generate differentiated hepatocytes very efficiently and with high purity from your own healthy or disease iPSCs.

      Our Hepatocytes Differentiation Service includes:

      • Expansion of a host-derived iPSCs
      • Progenitor cell differentiation
      • Characterization of progenitor cells
      • Terminal differentiation
      • Characterization of Progenitor Cells/ Differentiated Cells by ICC (per marker)
    • Retinal Pigment Epithelium (RPE) Differentiation


      Human iPSC-derived retinal pigment epithelium (RPE) provides a physiologically relevant cell line model to understand basic ocular biology and ocular diseases. ASC’s iPSC-derived RPE protocol provides high quality RPEs with expression of lineage-committed markers and functional phenotype such as phagocytosis, and by providing an unlimited source of these cells.

      • RPE-like cells with typical cobblestone morphology and pigmentation
      • High quality and purity cells (60-80% purity) expressing RPE-specific markers Bestrophin 1 (BEST1)/ RPE65
      • iPSC reprogrammed from fibroblast/ PBMC/ CD34+ cord blood cells
      • From healthy/ disease/ engineered iPSCs
      • Optional! Control lines differentiated from “master” iPSC lines available
    • iPSC Culture Services


      Applied StemCell has a staff of talented scientists that can help you with the more complex to the daily laboratory tasks required of iPSC cell culture. Give your staff the freedom to focus on other project, while Applied StemCell takes care of your cell culture needs.

      We offer standard and customized cell culture services including mycoplasma testing and FBS lot evaluation.

      • iPSC expansion services
      • iPSC scale-up services
      • Neural Stem Cells, Differentiated Cells scale-up services
      • 3D-culture and morphology testing

      Please contact us to discuss your needs with our technical service specialists.

  • Neurotoxicity Screening

  • CRISPR/Cas9 Genome Editing

    • Cell Line Models


      We Understand Cell Lines! Leverage our expert, comprehensive CRISPR/Cas9 cell line modeling service for a stress-free research. With 1300+ unique cell line models engineered from >200 distinct mammalian cell lines, we can engineer perfectly suited cell line models for your research using highly optimized and efficient CRISPR/Cas9 genome editing strategies and protocols:

      • Engineer a variety of mutations; or correct mutations, including fusion gene(s)
      • Variety of cell lines: cancer, hard-to-transfect, blood lineage, stem cell lines and many more
      • Start-to finish cell line generation workflow; optional downstream cell line validation
      • Custom deliverables: homozygous/ heterozygous clones; point mutation with/without silent mutation
      • >97% success rate; turnaround time as fast as 2 months
      Cell Line Model Generation Categories

      CRISPR/Cas9
      Cell Line
      Service

      Our CRISPR/Cas9 service uses proprietary gRNA design and protocols to genetically modify any gene of interest in hundreds of mammalian cell lines.

      CRISPR/Cas9
      Cell Line Model
      Service

      CRISPR/Cas9
      Stem Cell
      Service

      CRISPR/Cas9 genome editing in control/ patient iPSCs to engineer or correct mutations for predictive in vitro modeling of human biology and disease.

      CRISPR/Cas9 Genome
      Editing in
      Stem Cells

      CRISPR/Cas9 Cell Line
      Service - Hematopoietic Cells
      (Jurkat and TF-1)

      Applied StemCell has optimized the CRISPR/Cas9 technology to achieve the highest success rate for genome editing of human blood lineage cell lines.

      CRISPR/Cas9 Cell Line
      Service - Hematopoietic Cells
      (Jurkat and TF-1)

      CRISPR/Cas9 Gene Fusion
      Cell Line

      Chromosomal rearrangement for custom fusion gene cell line models using CRISPR/Cas9

      CRISPR Gene Fusion
      Cell Line Generation

    • Mouse Models


      ASC is one of the earliest service providers of CRISPR/Cas9 technology, and has successfully delivered >500 CRISPR mouse models in as little as 3 months. Our animal model portfolio offers competitive pricing and turnaround times for generating CRISPR knockout, conditional knockout, locus-specific/ safe harbor knock-in, controlled gene expression and gene correction, and more.

      • Most up-to-date CRISPR designing strategies and protocols
      • 100% target-site cutting efficiency using optimized, proprietary gRNA validation methods
      • Animal IP belongs to researchers
      • Project management and scientific support to discuss your project needs and suitable strategic options to fit your budget
      • NEW! Downstream electrophysiology and behavioral assessments for your mouse models
      Mouse Models Categories

      CRISPR Conditional Knockout
      Mouse Models

      We can generate conditional knockout mouse models to your specifications. You will have precise control over where or when your gene is knocked-out.

      CRISPR Conditional Knockout
      Mouse Models

      CRISPR Knockout, Knock-in,
      Point Mutation Mouse Models

      Custom CRISPR mouse model service using advanced design strategies, optimized protocols and validation methods to generate mouse models quickly.

      CRISPR Knockout, Knock-in,
      Point Mutation Mouse Models

      Homologous Recombination Conditional Knockout Mouse Model and Knock-in Mouse Models

      Leverage our expertise in knock-in/ knockout mouse model generation, vector designing, ES cell targeting and mouse handling to advance your research.

      Homologous Recombination Conditional Knockout Mouse Model and Knock-in Mouse Models

      Transgenic Mice Models

      Our animal specialists can generate transgenic mouse models using bacterial artificial chromosome (BAC) or random microinjection into the pronucleus.

      Transgenic Mice Models

    • Rat Models


      With the need to physiologically relevant animals models on the rise for more predictive research findings, genetically engineered rat models are becoming increasingly popular. Get ahead of your competition by leveraging Applied StemCell’s expertise in CRISPR/Cas9 and TARGATT™ genome editing technologies and animal models engineering to generate the ideal rat model to meet your specifications and budget.

      • Global leader in genetically engineered rat models (Nature article, “CRISPR mouse model boom, rat model renaissance”)
      • Detailed discussion to understand project requirements, optimal project design for precise genetic modification and dedicated project management for timely updates
      Rat Models Categories

      CRISPR Knock-In, Knock-Out,
      Conditional Knock-Out Rat

      CRISPR/Cas9 technology will be used to generate rat models that contain point mutation(s), small reporter/ gene insertions and conditional knockouts.

      CRISPR Knock-In, Knock-Out,
      Conditional Knock-Out Rat

      Bacterial Artificial Chromosome (BAC) Knock-in and Conditional Knock-In Rat Models

      We offer BAC design, cloning strategy, cloning and sequence validation of the BAC, pronuclear microinjection of BAC into rat embryos, and genotyping.

      Bacterial Artificial Chromosome (BAC) Knock-in and Conditional Knock-In Rat Models

  • TARGATT™ Genome Editing

    • TARGATT™ Site-Specific Knock-in Mouse


      Applied StemCell’s proprietary TARGATT™ knock-in mouse technology enables highly efficient and site-specific gene integration to generate transgenic mouse models. This technology uses PhiC31 integrase to insert any gene of interest into a specific docking site that has been pre-engineered into an intergenic and transcriptionally active genomic locus for guaranteed transgene expression.

      Advantages of TARGATT™ Technology for Knock-in Mouse Model Generation:

      • Safe harbor locus “large fragment knock-in” (up to 22 kb)
      • High efficiency insertion (up to 40%)
      • Single copy in an active locus: avoid gene silencing and genomic instability.
      • Germline transmitted F1 mice in 5-8 months
      • Tissue-specific/ ubiquitous, controlled/ inducible expression options

      Please contact us to discuss your project plan.

    • TARGATT™ Site-Specific Knock-in Rat


      Applied StemCell’s proprietary TARGATT™ technology enables generation of physiologically relevant transgenic rat models suitable for a variety of applications including reporter gene expression, gene knock-down, conditional gene expression and disease models. This technology uses the Phic31 integrase to mediate an irreversible integration of large transgene(s) into a preselected, safe harbor locus with guaranteed gene expression.

      • Site-specific, single copy transgene integration overcomes challenges associated with random integration
      • TARGATT™ knock-in rats in 6-9 months
      • Direct microinjection of the TARGATT™ reagents into rat zygotes

      Using the TARGATT™ technology, ASC has also developed Neural Specific Cre-Rat Lines in a Sprague Dawley rat background. Please inquire.

    • TARGATT™ Site-Specific Knock-in Cell Line Service


      Applied StemCell’s proprietary site-specific TARGATT™ technology can be used to generate stable, knock-in of large transgenes in cell lines, including stem cells, very efficiently and quickly.  Knock-in is mediated by PhiC31 integrase at a pre-engineered “docking site” in an intergenic, transcriptionally active genomic locus (safe harbor locus) for guaranteed gene expression without disruption of internal genes. This technology allows only a single-copy integration with very high efficiency with or without clonal selection.

      Use our TARGATT™ technology to generate your ”Master” cell lines, reporter/tag lines, for iPSC generation, conditional gene expression models and more.

      Also, try our ready-to-use TARGATT™ Master Cell Lines to knock-in transgenes in your own lab.

    • EvolvOne™ TARGATT™ Protein Screening Platform


      The TARGATT™ technology enables faster and efficient site-specific integration of large DNA fragments in cell lines. This technology offers an ideal platform for generating stable isogenic cell line libraries for mammalian cell display-mediated antibody engineering, protein evolution screening, mammalian two-hybrid (M2H) screens and more. It allows only a 1:1 variant-to-cell ratio, and guarantees uniform and consistent expression of the gene/protein for efficient screening.

      • Single copy knock-in: 1 cell, 1 docking site, 1 inserted transgene
      • Site-specific knock-in: avoids problems associated with random insertion
      • Isogenic cell library: comparison of phenotype against identical baseline
      • Cost-effective and efficient library construction: no virus packaging time and resources
      • BSL1 compatible
  • Bioproduction

    • CHO Cells


      TARGATT™ Chinese Hamster Ovary (CHO) Cells for Recombinant Proteins and Antibody Bioproduction

      Applied StemCell has created Master TARGATT™ CHO cell lines for the rapid creation of new lines for high level protein and antibody expression. The TARGATT™ CHO master cell lines yield >2.5g/L of recombinant proteins in a 2-week fed-batch shake flask expression system and is easily scalable for large scale bioproduction. 

      Our Master TARGATT™ CHO cell lines exceed the capabilities of the traditionally made CHO antibody production cells and also reduces the cost of bioproduction and manufacturing. Our technology makes CHO antibody production feasible and economical for companies and projects of all sizes.

      Please let us know how we can help you with your CHO bioproduction project!

    • Transgenic Animals - Rabbit


      TARGATT™ Rabbit for Biopharming and High-Yield Recombinant Protein and Antibody Production

      Animal bioproduction uses transgenic animal mammary gland as a bioreactor for the production of recombinant proteins. Animal bioproduction, compared to CHO bioproduction, has the advantages of lower upfront and maintenance costs; is easy to contain, control and transport; involves faster development processes and no scale-up issues; and has a unique low-cost bulk holding stage (frozen milk). However existing technological methods such as random integration to create transgenic animals have many limitations. Applied StemCell has overcome these limitations with our proprietary TARGATT™ technology to reproducibly, and consistently, control the knock-in locus, copy number and expression of the target protein in transgenic animals.

  • Lentivirus Stable Cell Line Generation

  • Virus Packaging & DNA Cloning

    • Virus Packaging (Lentivirus and Retrovirus)


      Applied StemCell provides lentiviral and retroviral custom virus packaging services for your CRISPR/Cas9 components, CAR-T expression vectors and other transgenes, for efficient delivery into cell lines (such as hard-to-transfect cell lines, primary cell lines) as well as direct injection into animal models.

      • Rapid, custom lentivirus or retrovirus virus packaging
      • Ready-to-transduce viral particles provided to you
      • High quality, high titer viral particles in 10 days
      • VSV-G pseudotyped viruses that exhibit broad tropism across a range of cell types
      • High titer amplification of viruses, up to 10^9 infectious units per ml
      • Accurate viral titers quantified by qRT-PCR
      • Confirmation by DNA sequencing
      • Large scale production, clonal expansion and cryopreservation
    • CRISPR / Cas9 Vector Design & Construction


      Applied StemCell is one of the earliest licensees and provider of CRISPR/Cas9 genome editing services. We are experts in designing and cloning components for CRISPR-based gene editing in cell lines and animal models using benchmark strategies and optimized protocols. Our scientists have designed > 1000 CRISPR projects for researchers worldwide, and we use the latest sequencing and next generation sequencing (NGS) protocols to validate your gRNAs and to ensure high efficiency gene modification in your gene of interest.

      We offer CRISPR/Cas9 vector design, construction and gRNA validation for:

      • Cell line gene modification
      • Microinjection into embryos for animal model generation
      • Virus packaging
    • Vector Design / Cloning Service


      Applied StemCell has extensive expertise in anything DNA-related. We can develop the best strategy to tackle your cloning projects, and find solutions to all your technical problems.

      • Comprehensive services for genome engineering for in vivo and in vitro applications
      • Restriction fragment cloning
      • Design and validation of CRISPR/Cas9 components: gRNA design and in vitro validation by next generation sequencing (NGS)
      • Gene targeting vectors for homologous recombination
      • Design and construction of vectors for transient mammalian transgene expression
      • Bacterial artificial chromosome recombineering for large fragment insertion
      • Design of RNAi and inducible vectors, gene tagging, and site-directed mutagenesis
      • Vector design for generation of random transgenic cell line and animal models
    • Bacterial Artificial Chromosome (BAC) Design and Cloning


      Bacterial Artificial Chromosomes (BACs) are ultra-low copy vectors that can hold up to 300 kb of genomic fragments, making them ideal vectors for introduction of entire genes including the regulatory regions for disease modeling with transgenic animals. BACs are traditionally difficult to modify with restriction enzymes and ligases because of their large size. Applied StemCell uses homologous recombination to introduce precise changes into BACs for your specific experimental needs. Virtually any desired modification can be introduced into a BAC, including insertion of reporter genes, point mutations, Lox-STOP-Lox conditional modifications, and more.

      Our custom BAC services include:

      • Design
      • Cloning
      • Validation

      Applied StemCell can also help you create transgenic rats using BACs.

  • CRO Services

    • Discovery: Model Generation and Validation


      ASC offers a full suite of comprehensive services tailored towards your preclinical stage cell and gene therapy (CGT) projects. Leverage our fully integrated service platform starting with in vitro model generation and cell-based assays, followed by custom animal models and in vivo assays for target validation for early go-no-go decisions of your biotherapeutics. We have a unique team of scientists with multidisciplinary expertise in CRISPR/ genome engineering technologies, stem cell biology, immuno-oncology, gene therapy models, viral vectors, and bioinformatics for every aspect of your CGT projects. We can generate in vitro and in vivo models, design viral vectors (AAV, lentivirus) and develop proof-of-concept and target validation assays specific to your therapeutic pipeline needs.

      Discovery: Preclinical Cell & Gene Therapy Services Categories

      Cell Line
      Model Generation

      Custom stable cell line model generation to generate biorelevant disease models to validate your cell and gene therapy candidates.

      Cell Line
      Model Generation

      Mouse Model
      Generation

      Precision genome engineering to generate mouse/rat models of human diseases including humanized mouse models for CGT projects.

      Mouse Model
      Generation

      Cell Line Model Validation

      Fully customizable assay development for phenotypic characterization and validation of your engineered cell line models.

      Cell Line Model Validation

      In VivoAnimal Model Validation

      ASC offers fully customizable assays for phenotypic characterization and validation of your genetically engineered animal models.

      Animal Model Validation

    • IND-Enabling Studies: Pharmacodynamics, Efficacy Assay Development


      Cell and Gene Therapy (CGT) drugs have their unique mechanism of action and require a more tailor-made approach for drug development and regulatory approval. Starting from custom cell line and animal model generation for the targeted disease, ASC’s multidisciplinary team of experts can develop preclinical assays to determine efficacy, PK/PD, dose-ranging studies, biodistribution, and develop other IND-enabling assays to measure potency (DNA/ RNA/ protein levels) and toxicity of the drug in multiple species samples including NHPs, immunogenicity of the drug, and more. We will work with you every step of the way including pre-IND meetings with the FDA/ respective regulatory bodies to develop the right assay matrix for your CGT candidates.

    • CMC Support: Cell and Gene Therapy CRO Services


      Detailed Chemistry, Manufacturing & Control (CMC) information submission is a critical part of your IND-submission irrespective of the class of therapeutic under investigation in order to validate the identity, purity, potency, viability, titers, potency, cell dose of your drug candidate. ASC offers expert CMC consultation and assay support for your investigational biotherapeutic: from potency analysis at DNA/ RNA/ protein levels, titration, cGMP cell line characterization for cell therapies, we offer you a support and resources to navigate the guidelines provided by the FDA or other regulatory authorities to enable regulatory compliance.

    • Drug Toxicity and Efficacy Testing


      Make Informed Go-No-Go Decisions Early in Your Drug Development Process!

      Leverage Applied StemCell’s unique expertise in CRISPR/Cas9 and induced pluripotent stem cell (iPSC) technologies to engineer predictive and reliable in vitro disease models as an alternative to animal models for preliminary drug screening.

      Our ISO:9001 certified service platform offers full flexibility in choosing assay modules with a wide-range of functional endpoints for early-stage in vitro screening of preclinical drug candidates. We have a comprehensive cell-based test battery from which you can choose assays for efficacy, safety or target discovery that suit your therapeutic pipeline. We provide the scientific expertise, accurate and efficient screening to help you make informed decisions about your small/ large molecules early in your drug development process.

Have Questions?

An Applied StemCell technical expert is happy to help, contact us today!