• iPSC Disease Modeling with CRISPR
    Genome Editing
    • Single Cell Cloning, Homozygous or Heterozygous
    • Downstream iPSC Differentiation
      iPSC Disease Modeling with CRISPR<br/>Genome Editing

    High-throughput iPSC Genome Editing Service

    Applied StemCell (ASC) has provided stem cell and genome editing services for over 12 years, and we have worked with researchers all across the globe to engineer over 500 unique cell line models. As one of the earliest providers of CRISPR/Cas9 genome editing services, ASC has the experience and optimized protocols for Rapid Automated Cell Line Editing (RACE™) in induced pluripotent stem cells (iPSCs)!

    With our well-established high-throughput protocols, ASC's experts can produce any complex or mainstream genetic modification in your healthy or diseased iPSCs for your basic research, disease modeling, tissue engineering, regenerative medicine, or cell-based therapy research. Leverage our affordable, customizable iPSC genome editing service to obtain your genetically modified iPSCs in just a few weeks.

    technical-service-stemcell-genomeediting-graph

    • High success rate: >98% projects completed to customer’s specifications

    • ASC can genetically modify your healthy or diseased iPSCs; control lines are available

    • Single cell cloning (clonal isolation) 

    • Homozygous or Heterozygous 

    • Automated processes for consistency and high throughput scalability

    • Pluripotency maintained throughout genome editing process using high-end cell culture reagents and protocols

    ASC is a one-stop-shop for all your iPSC service needs. We are one of the few providers of integrated upstream iPSC generation & downstream differentiation and assay development servicesIf you are looking to engineer iPSCs in a GMP setting, we invite you to read more about our new GMP-grade iPSC service offerings

    Applied StemCell's iPSC Genome Editing Service Compared to Other Providers

      ASC Other Providers
    Final Deliverables Isogenic Clones with Detailed QC Mostly pool
    Choice of Zygosity Flexible Fixed Standard
    Types of Gene Modifications Flexible Fixed Standard
    Starting iPSC Lines Customer’s, ASC’s Master Lines Mostly Customer’s only
    Donor Genetic Background Normal, Disease-specific Limited to Healthy
    QC for Final Product Standard, Flexible Mostly Standard
    Downstream Assays Available Mostly Limited
    Timeline for Projects 2-3 months 5-6 months
    FAQs
    Is the gene editing process feeder independent?
    Products and Services
    Technical Details

    Automated High-throughput Protocols for the Genetic Modification of Your iPSC Line of Choice

    We can engineer your control and disease iPSC lines or choose from one of our well-characterized master iPSC lines derived from fibroblasts (male: ASE-9211; female: ASE-9209), cord blood, or PBMCs, which have proven CRISPR gene editing and differentiation potential.

    Faster Timelines with Automated High-throughput Protocols

    Project type

    Conventional Protocols

    ASC’s Optimized High-throughput Protocols

    Improvement in Delivery Times

    Knockout (KO)

    12-20 weeks

    6-8 weeks

    60%

    Point Mutation

    (Single Nucleotide Polymorphism or Variant)

    12-20 weeks

    6-8 weeks

    60%

    Knock-in

    (Reporters/ Tags, Large Transgenes)

    12-24 weeks

    10-15 weeks

    20-30%

     


    A Variety of Other Modifications: Standard & Complex

    Correct/engineer mutations or introduce a variety of genetic modifications in iPSCs:

    • Gene knockout: gene disruption or site-specific large fragment knockout (>10kb)
    • Gene insertion: reporter gene/ tag insertion, small fragment insertions, SNV/ point mutations
    • Inducible gene expression/ gene overexpression models
    • Gene fusion (translocation, inversion, etc)

    Don't limit yourself to only the standard modifications. Ask us about: Multiplexed genome editing; conditional knock-in, gene fusion, and other models that you would like for your projects.


    And…. We offer Customized Deliverables

    • Choice of heterozygous or homozygous mutations
    • Footprint-free genome editing – Ex. Single nucleotide variant (SNV; point mutation) engineering without silent mutations for regulatory compliance
    • Specific genetic or safe harbor locus
    Publications
    • Ilic, D. (2019). Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions in October 2018. Regenerative medicine, 14(2), 85-92.
    • Simkin, D., Searl, T. J., Piyevsky, B. N., Forrest, M., Williams, L. A., Joshi, V., ... & Penzes, P. (2019). Impaired M-current in KCNQ2 Encephalopathy Evokes Dyshomeostatic Modulation of Excitability. bioRxiv, 538371. https://doi.org/10.1101/538371
    • Jang, Y., Choi, J., Park, N., Kang, J., Kim, M., Kim, Y., & Ju, J. H. (2019). Development of immunocompatible pluripotent stem cells via CRISPR-based human leukocyte antigen engineering. Experimental & Molecular Medicine, 51(1), 3.
    • Lizarraga, S. B., Maguire, A. M., Ma, L., van Dyck, L. I., Wu, Q., Nagda, D., ... & Cowen, M. H. (2018). Human neurons from Christianson syndrome iPSCs reveal allele-specific responses to rescue strategies. bioRxiv, 444232.
    • Tanaka, H., Kondo, K., Chen, X., Homma, H., Tagawa, K., Kerever, A., ... & Fujita, K. (2018). The intellectual disability gene PQBP1 rescues Alzheimer’s disease pathology. Molecular Psychiatry, 1.
    • Selvan N., George, S., Serajee, F. J., Shaw, M., Hobson, L., Kalscheuer, V. M., ... & Schwartz, C. E. (2018). O-GlcNAc transferase missense mutations linked to X-linked intellectual disability deregulate genes involved in cell fate determination and signaling. Journal of Biological Chemistry, jbc-RA118.

    • Chai, S., Wan, X., Ramirez-Navarro, A., Tesar, P. J., Kaufman, E. S., Ficker, E., ... & Deschênes, I. (2018). Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity. The Journal of clinical investigation, 128(3).

    • Seigel, G. M., et al. (2014). Comparative Analysis of ABCG2+ Stem-Like Retinoblastoma Cells and Induced Pluripotent Stem Cells as Three-Dimensional Aggregates. Investigative Ophthalmology & Visual Science, 55(13), 3068-3068.

    • Comley, J. (2016). CRISPR/Cas9 - transforming gene editing in drug discovery labs. Drug Discovery Weekly. Fall 2016; 33-48.

    Have Questions?

    An Applied StemCell technical expert is happy to help, contact us today!

    Google