• iPSC Disease Modeling with Genome
    • CRISPR-Cas9
    • Homozygous or heterozygous
    iPSC Disease Modeling with Genome <br/>Editing

High-throughput iPSC Genome Editing Service

Rapid Automated Cell Line Editing (RACE™) in iPSCs! Engineer predictive cell line models in the more physiologically relevant iPSC lines. After >11 years’ genome editing and stem cell expertise, & having engineered 500+ unique cell line models, Applied StemCell offers you the best CRISPR-iPSC service with:

  • Up to 60% faster turnaround times than traditional protocols
  • High success rate (>98%)
  • Your patient iPSC lines or our master iPSCs
  • Automated & efficient CRISPR & single cell cloning protocols
  • Pluripotency maintained throughout genome editing

 Any type of modification to suit your needs: Complex and mainstream genetic modifications. And, one of the few providers for integrated upstream iPSC generation & downstream differentiation services.


Is the gene editing process feeder independent?
Products and Services
Technical Details

CRISPR-engineered induced pluripotent stem cells (iPSCs) and their differentiation to many different cell lineages-of-choice provide a very valuable, unlimited and consistent source of physiologically relevant and predictive cell line models for understanding biological mechanisms, disease pathology, and developing cell-replacement therapies. The parental iPSC line can be used as an isogenic control for quality research and reliable interpretation of results. This is a huge advantage over using primary cells which are: (1) hard-to-source; (2) have large genetic variability; (3) and batch-to-batch variability in quality of cells.

While both the iPSC and CRISPR technologies have advanced considerably in recent years, handling of iPSCs throughout the genome engineering process requires a special skill set for accurate genetic modification while maintaining the health and pluripotency of the cell lines.

That is where Applied StemCell’s (ASC) special expertise lies! We were one of the first CRISPR-iPSC custom service providers, and over the years we have optimized and evolved our iPSC service offerings to become of the premier CRISPR-iPSC service providers.

In fact, Applied StemCell is a recognized leader in stem cell and genome editing technologies, and is a member of the National Institute of Standards and Technology (NIST) Genome Editing Consortium.

Why Choose ASC’s CRISPR-iPSC Services?


  • Faster turnaround times: Up to 60% faster than conventional processes
  • High success rate: >98% projects completed to customer’s specifications
  • Automated processes for consistency and high throughput scalability
  • Single cell cloning (clonal isolation) offered as standard service milestone to provide homogenous population with desired genotype
  • Pluripotency maintained throughout genome editing process using high-end cell culture reagents and protocols

All our protocols use our several years of expertise in stem cell genome editing and CRISPR, and are optimized for higher efficiency and accuracy.

Faster Timelines with Automated High-throughput Protocols

Project type

Conventional Protocols

ASC’s Optimized High-throughput Protocols

Improvement in Delivery Times

Knockout (KO)

12-20 weeks

6-8 weeks


Point Mutation

(Single Nucleotide Polymorphism or Variant)

12-20 weeks

6-8 weeks



(Reporters/ Tags, Large Transgenes)

12-24 weeks

10-15 weeks



We can engineer/ correct mutations in your control/ disease iPSC lines or choose from one of our well-characterized master iPSC lines derived from cord blood (male: ASE-9109; female: ASE-9110) or fibroblasts (male: ASE-9211; female: ASE-9209) with proven CRISPR gene editing and differentiation potential.

And…. We offer Customized Deliverables

  • Choice of heterozygous or homozygous mutations
  • Footprint-free genome editing – Ex. Single nucleotide variant (SNV; point mutation) engineering without silent mutations for regulatory compliance
  • Specific genetic or safe harbor locus

A Variety of Other Modifications: Standard & Complex

Correct/engineer mutations or introduce a variety of genetic modifications in iPSCs:

  • Gene knockout: gene disruption or site-specific large fragment knockout (>10kb)
  • Gene insertion: reporter gene/ tag insertion, small fragment insertions, SNV/ point mutations
  • Inducible gene expression/ gene overexpression models
  • Gene fusion (translocation, inversion, etc)

Don't limit yourself to only the standard modifications. Ask us about: Multiplexed genome editing; conditional knock-in, gene fusion, and other models that you would like for your projects.

Applied StemCell’s iPSC Genome Editing Services Compared to Other Providers



Other Providers

Final Deliverables

Isogenic Clones with Detailed QC

Mostly pool

Choice of Zygosity


Hard to Control

Types of Gene Modifications


Fixed Standard

Starting iPSC Lines

Customer’s,  ASC’s Master Lines

Mostly Customer’s only

Donor Genetic Background

Normal, Disease-specific

Limited to Healthy

QC for Final Product

Standard, Flexible

Mostly Standard

Downstream Assays


Mostly Limited

Timeline for Projects

2-3 months

5-6 months


START-to-finish Stem Cell Services


We offer a fully customizable one-stop-shop experience! In addition to our CRISPR-iPSC platform, we are one of the few companies that also offer custom upstream services such as iPSC reprogramming and characterization, and downstream differentiation to various cell lineages (neural lineage, T cells, cardiomyocytes, hepatocytes, and more), cell line validation, as well as early-stage preclinical drug screening and toxicity testing. 


  • Physiologically relevant disease models for hard-to-model diseases (Ex. ALS, muscular dystrophy, Parkinson's disease, Alzheimer's)
  • Differentiate to study mutations in different tissue lineages with an isogenic panel of cell line models
  • Ideal for target drug discovery, drug and toxicity screening

Service Details

  • Provide 1 x 10^6 cells of your iPSC lines or choose a cell line from ASC's well-characterized master cell lines: derived from cord blood (male: ASE-9109; female: ASE-9110) or fibroblasts (male: ASE-9211; female: ASE-9209).
  • Source cells can be fibroblasts, PBMCs, or other biosamples. 


Case Studies

Towards Generating Allogenic/ Immunocompatible iPSCs

Read the 2019 Nature Experimental & Molecular Medicine paper which cites Applied StemCell’s CRISPR-iPSC Genome Editing service to generate HLA-B gene knockout (KO) in a human iPSC line. We successfully generated HLA-B knockout in these cell lines which continued to express HLA-A, while maintaining their pluripotent stem cell-like characteristics. The authors observed that the HLA-B-KO cell lines exhibited less immunogenicity as compared to the isogenic, parental control line in HLA-targeted complement-dependent cytotoxicity assays.

We can help you genome engineer iPSC lines with multiplexed inactivation and activation of immunogenic genes to advance development of your non-immunogenic, universal/ master iPSC lines for next generation stem cell-based cell replacement therapies.

  • Ilic, D. (2019). Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions in October 2018. Regenerative medicine, 14(2), 85-92.
  • Simkin, D., Searl, T. J., Piyevsky, B. N., Forrest, M., Williams, L. A., Joshi, V., ... & Penzes, P. (2019). Impaired M-current in KCNQ2 Encephalopathy Evokes Dyshomeostatic Modulation of Excitability. bioRxiv, 538371. https://doi.org/10.1101/538371
  • Jang, Y., Choi, J., Park, N., Kang, J., Kim, M., Kim, Y., & Ju, J. H. (2019). Development of immunocompatible pluripotent stem cells via CRISPR-based human leukocyte antigen engineering. Experimental & Molecular Medicine, 51(1), 3.
  • Lizarraga, S. B., Maguire, A. M., Ma, L., van Dyck, L. I., Wu, Q., Nagda, D., ... & Cowen, M. H. (2018). Human neurons from Christianson syndrome iPSCs reveal allele-specific responses to rescue strategies. bioRxiv, 444232.
  • Tanaka, H., Kondo, K., Chen, X., Homma, H., Tagawa, K., Kerever, A., ... & Fujita, K. (2018). The intellectual disability gene PQBP1 rescues Alzheimer’s disease pathology. Molecular Psychiatry, 1.
  • Selvan N., George, S., Serajee, F. J., Shaw, M., Hobson, L., Kalscheuer, V. M., ... & Schwartz, C. E. (2018). O-GlcNAc transferase missense mutations linked to X-linked intellectual disability deregulate genes involved in cell fate determination and signaling. Journal of Biological Chemistry, jbc-RA118.

  • Chai, S., Wan, X., Ramirez-Navarro, A., Tesar, P. J., Kaufman, E. S., Ficker, E., ... & Deschênes, I. (2018). Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity. The Journal of clinical investigation, 128(3).

  • Seigel, G. M., et al. (2014). Comparative Analysis of ABCG2+ Stem-Like Retinoblastoma Cells and Induced Pluripotent Stem Cells as Three-Dimensional Aggregates. Investigative Ophthalmology & Visual Science, 55(13), 3068-3068.

  • Comley, J. (2016). CRISPR/Cas9 - transforming gene editing in drug discovery labs. Drug Discovery Weekly. Fall 2016; 33-48.

Have Questions?

An Applied StemCell technical expert is happy to help, contact us today!