• Teratoma Analysis, iPSC Characterization

Teratoma Analysis, iPSC Characterization

Comprehensive services to fully characterize your ESC/ iPSC cell lines!

Stringent molecular and functional assays to evaluate pluripotency for publication and to rule-out genetic aberrations are commonly required for a newly generated ES or iPSC line. We offer all services needed for a complete characterization of your pluripotent cell lines:

  • Teratoma formation analysis

  • EB (embryoid body) formation and characterization 

  • Pluripotency and lineage-specific marker immunostaining (Human/ mouse OCT4, SOX2, SSEA4, TRA-1-60, TRA-1-81, mouse Ssea-1)

  • qPCR, RNA-seq

  • Karyotyping (Chromosome counting, G-banding)

  • Germline transmission and sex determination

ASC’s teratoma formation analysis and karyotyping service has > 97% success rate and has been acknowledged in > 30 peer-reviewed publications.

Products and Services

8 Items

per page
Supporting Material
Technical Details

ES/iPS Cell Services - iPSC Characterization

Advantage of ASC’s Teratoma Service:

Success Rate

Key PointsASC's methodsTraditional methos
Cell Type mESC/miPSC hESC hiPSC hESC
Teratoma Formation Rate 100% 100% 93.7% 25-40%
Differentiation distinctive distinctive distinctive poor
Trunaround Time 3-5 weeks 5-8 weeks 10-14 weeks 12-18 weeks
Cells needed 0.5-1 million/site 0.5-2 million/site 1-2 million/site 3-5 million/site

Teratoma Formation Service includes:

  • Cell injection in 2 sites: kidney and testis

  • Teratoma harvesting

  • Tissue sectioning

  • H&E staining

  • Histological analysis of teratoma sections

Deliverables and Timeline:

  • Complete report with histological analysis and high-resolution images of EN, ME, EC formation

  • Tissue blocks and H&E stained tissue section slides

  • Timeline: 1-3 months

Case Studies

Figure. H&E staining of kidney and testis teratomas from mice injected with the ASE-9203 control iPSC line shows differentiated tissues representing the three germ layers, indicated by arrowheads. EN: endoderm; ME: mesoderm; EC: ectoderm.


Teratoma Formation Assay (Published reports of ASC's Teratoma Formation Analysis Reports can be found in the Certificate of Analysis "Induced Pluripotent Stem Cells (iPSCs)" by Coriell Institute for Medical Research.)

References (*cited/published articles)

  • Ou, J., Ball, J. M., Luan, Y., Zhao, T., Miyagishima, K. J., Xu, Y., ... & Mallon, B. S. (2018). iPSCs from a Hibernator Provide a Platform for Studying Cold Adaptation and Its Potential Medical Applications. Cell173(4), 851-863. https://doi.org/10.1016/j.cell.2018.03.010

  • Teves, S. S., An, L., Bhargava-Shah, A., Xie, L., Darzacq, X., & Tjian, R. (2018). A stable mode of bookmarking by TBP recruits RNA Polymerase II to mitotic chromosomes. bioRxiv, 257451. DOI: 10.1101/257451

  • Hansen, A. S., Pustova, I., Cattoglio, C., Tjian, R., & Darzacq, X. (2017). CTCF and cohesin regulate chromatin loop stability with distinct dynamics. Elife, 6.

  • Vermilyea, S. C., Guthrie, S., Meyer, M., Smuga-Otto, K., Braun, K., Howden, S., ... & Golos, T. G. (2017). Induced Pluripotent Stem Cell-Derived Dopaminergic Neurons from Adult Common Marmoset Fibroblasts. Stem cells and development, 26(17), 1225-1235. https://doi.org/10.1089/scd.2017.0069.

  • Teves, S. S., An, L., Hansen, A. S., Xie, L., Darzacq, X., & Tjian, R. (2016). A dynamic mode of mitotic bookmarking by transcription factors. Elife, 5.

  • Laskowski, T. J., Van Caeneghem, Y., Pourebrahim, R., Ma, C., Ni, Z., Garate, Z., ... & Segovia, J. C. (2016). Gene correction of iPSCs from a Wiskott-Aldrich syndrome patient normalizes the lymphoid developmental and functional defects. Stem cell reports7(2), 139-148.

  • Boza-Morán, M. G., Martínez-Hernández, R., Bernal, S., Wanisch, K., Also-Rallo, E., Le Heron, A., ... & Tizzano, E. F. (2015). Decay in survival motor neuron and plastin 3 levels during differentiation of iPSC-derived human motor neurons. Scientific reports, 5, 11696.

  • Romero, I. G., Pavlovic, B. J., Hernando-Herraez, I., Zhou, X., Ward, M. C., Banovich, N. E., ... & Chavarria, C. I. (2015). A panel of induced pluripotent stem cells from chimpanzees: a resource for comparative functional genomics. Elife, 4.

  • Cheung, H. S., Pelaez, D., & Huang, C. C. (2015). U.S. Patent Application No. 14/382,287.

  • Chakravarti, D., Su, X., Cho, M. S., Bui, N. H. B., Coarfa, C., Venkatanarayan, A., ... & Leung, M. L. (2014). Induced multipotency in adult keratinocytes through down-regulation of ΔNp63 or DGCR8. Proceedings of the National Academy of Sciences, 111(5), E572-E581.

  • Lee, J., Kim, Y., Yi, H., Diecke, S., Kim, J., Jung, H., ... & Park, S. H. (2014). Generation of disease-specific induced pluripotent stem cells from patients with rheumatoid arthritis and osteoarthritis. Arthritis research & therapy, 16(1), R41.

  • Quang, T., Marquez, M., Blanco, G., & Zhao, Y. (2014). Dosage and cell line dependent inhibitory effect of bFGF supplement in human pluripotent stem cell culture on inactivated human mesenchymal stem cells. PloS one, 9(1), e86031.

  • Jumabay, M., Abdmaulen, R., Ly, A., Cubberly, M. R., Shahmirian, L. J., Heydarkhan-Hagvall, S., ... & Boström, K. I. (2014). Pluripotent stem cells derived from mouse and human white mature adipocytes. Stem cells translational medicine, 3(2), 161-171.

  • Sanders, L. H., Laganière, J., Cooper, O., Mak, S. K., Vu, B. J., Huang, Y. A., ... & Langston, J. W. (2014). LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson's disease patients: reversal by gene correction. Neurobiology of disease, 62, 381-386.

  • Sun, N., & Zhao, H. (2014). Seamless correction of the sickle cell disease mutation of the HBB gene in human induced pluripotent stem cells using TALENs. Biotechnology and bioengineering, 111(5), 1048-1053.

  • Lee, P., Martin, N. T., Nakamura, K., Azghadi, S., Amiri, M., Ben-David, U., ... & Lowry, W. E. (2013). SMRT compounds abrogate cellular phenotypes of ataxia telangiectasia in neural derivatives of patient-specific hiPSCs. Nature communications, 4, 1824.

  • Buccini, S. M. (2013). Doctoral dissertation, University of Cincinnati.

  • Pelaez, D., Huang, C. Y. C., & Cheung, H. S. (2013). Isolation of pluripotent neural crest-derived stem cells from adult human tissues by connexin-43 enrichment. Stem cells and development, 22(21), 2906-2914.

  • Cassidy, L., Choi, M., Meyer, J., Chang, R., & Seigel, G. M. (2013). Immunoreactivity of Pluripotent Markers SSEA-5 and L1CAM in Human Tumors, Teratomas, and Induced Pluripotent Stem Cells. Journal of Biomarkers, 2013, 960862. http://doi.org/10.1155/2013/960862.

  • Cooper, O., Seo, H., Andrabi, S., Guardia-Laguarta, C., Graziotto, J., Sundberg, M., … Isacson, O. (2012). Familial Parkinson’s disease iPSCs show cellular deficits in mitochondrial responses that can be pharmacologically rescued. Science Translational Medicine, 4(141), 141ra90. http://doi.org/10.1126/scitranslmed.3003985.

  • Zheng, Z., Jian, J., Zhang, X., Zara, J. N., Yin, W., Chiang, M., ... & Soo, C. (2012). Reprogramming of human fibroblasts into multipotent cells with a single ECM proteoglycan, fibromodulin. Biomaterials, 33(24), 5821-5831.

  • Almeida, S., Zhang, Z., Coppola, G., Mao, W., Futai, K., Karydas, A., ... & Sena-Esteves, M. (2012). Induced pluripotent stem cell models of progranulin-deficient frontotemporal dementia uncover specific reversible neuronal defects. Cell reports, 2(4), 789-798.

  • Zhang, W. Y., de Almeida, P. E., & Wu, J. C. (2012). Teratoma formation: A tool for monitoring pluripotency in stem cell research. StemBook.

  • Jing, L., Christoforou, N., Leong, K. W., Setton, L. A., & Chen, J. (2012). Differentiation potential of human induced pluripotent stem cells (iPSCs) to nucleus pulposus-like cells in vitro. Global Spine Journal, 2(1_suppl), s-0032.

  • Valamehr, B., Abujarour, R., Robinson, M., Le, T., Robbins, D., Shoemaker, D., & Flynn, P. (2012). A novel platform to enable the high-throughput derivation and characterization of feeder-free human iPSCs. Scientific reports, 2, 213.

  • Chen, K. G., Mallon, B. S., Hamilton, R. S., Kozhich, O. A., Park, K., Hoeppner, D. J., ... & McKay, R. D. (2012). Non-colony type monolayer culture of human embryonic stem cells. Stem cell research, 9(3), 237-248.

  • Telugu, B. P. V. L., Ezashi, T., Sinha, S., Alexenko, A. P., Spate, L., Prather, R. S., & Roberts, R. M. (2011). Leukemia Inhibitory Factor (LIF)-dependent, Pluripotent Stem Cells Established from Inner Cell Mass of Porcine Embryos. The Journal of Biological Chemistry, 286(33), 28948–28953. http://doi.org/10.1074/jbc.M111.229468.

  • Deleidi, M., Hargus, G., Hallett, P., Osborn, T., & Isacson, O. (2011). Development of histocompatible primate induced pluripotent stem cells for neural transplantation. Stem Cells (Dayton, Ohio), 29(7), 1052–1063. http://doi.org/10.1002/stem.662

 Karyotyping (*cited/published articles)

  • Zhao, L., Teklemariam, T., & Hantash, B. M. (2014). Heterelogous expression of mutated HLA-G decreases immunogenicity of human embryonic stem cells and their epidermal derivatives. Stem cell research, 13(2), 342-354.

  • Sun, N., & Zhao, H. (2014). Seamless correction of the sickle cell disease mutation of the HBB gene in human induced pluripotent stem cells using TALENs. Biotechnology and bioengineering, 111(5), 1048-1053.

  • An, M. C., Zhang, N., Scott, G., Montoro, D., Wittkop, T., Mooney, S., ... & Ellerby, L. M. (2012). Genetic correction of Huntington's disease phenotypes in induced pluripotent stem cells. Cell stem cell, 11(2), 253-263.

  • Zheng, Z., Jian, J., Zhang, X., Zara, J. N., Yin, W., Chiang, M., ... & Soo, C. (2012). Reprogramming of human fibroblasts into multipotent cells with a single ECM proteoglycan, fibromodulin. Biomaterials, 33(24), 5821-5831.

Have Questions?

An Applied StemCell technical expert is happy to help, contact us today!