CF-1 MEF Feeder Cells

Derived from CF-1 mouse embryos and used as feeder layers to support the growth of undifferentiated mouse or human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) .

MEF cells serve as feeder cells to support the growth of undifferentiated mouse or human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). MEF cells are isolated from mouse embryos and should be used at an early passage. Before use as feeder cells, MEF cells must be mitotically inactivated by γ-irradiation or mitomycin-C treatment.

CF-1 MEF feeder cells are derived from 13.5 day old mouse embryos and are most commonly used for ESC and iPSC culture.

All MEF cells are manufactured in the US and have an average viability of 95% after thawing. We offer both untreated cells for further expansion and treated cells that can be directly used as a feeder layer.

Also be sure to see our DR4 MEF Feeder Cells, Neo-resistant MEF Feeder Cells, and SNL 76/7 (STO Cell Line) MEF Feeder Cells.

 

 CF1

Products and Services
Catalog ID#Product Name SizePriceQTY
$95.00
$268.00
$48.00
$226.00
$37.00
$269.00
$24.00
$48.00
$226.00
$37.00
$269.00
0.00
0.00

13 Items

per page
Supporting Material

Brochures/ Flyers:

Icon-PDF Stem Cell Brochure

Publications

CF-1 MEF Feeder Cells

  • Barber, K., Studer, L., & Fattahi, F. (2019). Derivation of enteric neuron lineages from human pluripotent stem cells. Nature protocols, 14:1261–1279.
  • Berecz, T., Husvéth-Tóth, M., Mioulane, M., Merkely, B., Apáti, Á., & Földes, G. (2019). Generation and Analysis of Pluripotent Stem Cell-Derived Cardiomyocytes and Endothelial Cells for High Content Screening Purposes. In: Methods in Molecular Biology. Humana Press.
  • Madak-Erdogan, Z., Band, S., Zhao, Y. C., Smith, B. P., Kulkoyluoglu-Cotul, E., Zuo, Q., ... & Kim, S. H. (2019). Free fatty acids rewire cancer metabolism in obesity-associated breast cancer via estrogen receptor and mTOR signaling. Cancer research, canres-2849.
  • Deuse, T., Hu, X., Gravina, A., Wang, D., Tediashvili, G., De, C., ... & Davis, M. M. (2019). Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nature biotechnology, 1.
  • Kiamehr, M. (2019). Induced pluripotent stem cell-derived hepatocyte-like cells: The lipid status in differentiation, functionality, and de-differentiation of hepatic cells. Tampere University Dissertations.
  • Yeom, K. H., Mitchell, S., Linares, A. J., Zheng, S., Lin, C. H., Wang, X. J., ... & Black, D. L. (2018). Polypyrimidine Tract Binding Protein blocks microRNA-124 biogenesis to enforce its neuronal specific expression. bioRxiv, 297515https://doi.org/10.1101/297515
  • Chai, S., Wan, X., Ramirez-Navarro, A., Tesar, P. J., Kaufman, E. S., Ficker, E., ... & Deschênes, I. (2018). Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity. The Journal of Clinical Investigation, 128(3). DOI: 10.1172/JCI94996
  • Oh, Y., Zhang, F., Wang, Y., Lee, E. M., Choi, I. Y., Lim, H., ... & Wu, H. (2017). Zika virus directly infects peripheral neurons and induces cell death. Nature Neuroscience, 20(9), 1209-1212.
  • Kiamehr, M., Viiri, L. E., Vihervaara, T., Koistinen, K. M., Hilvo, M., Ekroos, K., ... & Aalto-Setälä, K. (2017). Lipidomic profiling of patient-specific induced pluripotent stem cell-derived hepatocyte-like cells. Disease Models & Mechanisms, dmm-030841.
  • Wong, K. G., et al. (2017). CryoPause: A New Method to Immediately Initiate Experiments after Cryopreservation of Pluripotent Stem Cells. http://www.cell.com/stem-cell-reports/pdfExtended/S2213-6711(17)30217-5.
  • Cvetkovic, C., et al. (2017). A 3D-printed platform for modular neuromuscular motor units. Microsystems & Nanoengineering, 3, 17015.
  • Kurapati, S., et al. (2017). Role of JNK pathway in varicella-zoster virus lytic infection and reactivation. Journal of Virology, JVI-00640.
  • Kotini, A. G., Chang, C. J., Chow, A., Yuan, H., Ho, T. C., Wang, T., ... & Teruya-Feldstein, J. (2017). Stage-specific human induced pluripotent stem cells map the progression of myeloid transformation to transplantable leukemia. Cell Stem Cell, 20(3), 315-328.
  • Maghen, L., Shlush, E., Gat, I., Filice, M., Barretto, T. A., Jarvi, K., ... & Librach, C. L. (2017). Human umbilical perivascular cells (HUCPVCs): a novel source of mesenchymal stromal-like (MSC) cells to support the regeneration of the testicular niche. Reproduction, 153(1), 85-95.
  • Nguyen, T. T. T., Park, W. S., Park, B. O., Kim, C. Y., Oh, Y., Kim, J. M., ... & Hahn, K. M. (2016). PLEKHG3 enhances polarized cell migration by activating actin filaments at the cell front. Proceedings of the National Academy of Sciences, 113(36), 10091-10096.
  • Uzel, S. G., Platt, R. J., Subramanian, V., Pearl, T. M., Rowlands, C. J., Chan, V., ... & Kamm, R. D. (2016). Microfluidic device for the formation of optically excitable, three-dimensional, compartmentalized motor units. Science advances, 2(8), e1501429.
  • Wang, J., Singh, M., Sun, C., Besser, D., Prigione, A., Ivics, Z., ... & Izsvák, Z. (2016). Isolation and cultivation of naive-like human pluripotent stem cells based on HERVH expression. Nature protocols, 11(2), 327.
  • Mimura, S., Suga, M., Okada, K., Kinehara, M., Nikawa, H., & Furue, M. K. (2016). Bone morphogenetic protein 4 promotes craniofacial neural crest induction from human pluripotent stem cells. International Journal of Developmental Biology, 60(1-2-3), 21-28.
  • Kaini, R. R., Shen-Gunther, J., Cleland, J. M., Greene, W. A., & Wang, H. C. (2016). Recombinant xeno-free vitronectin supports self-renewal and pluripotency in protein-induced pluripotent stem cells. Tissue Engineering Part C: Methods, 22(2), 85-90.
  • Chambers, S. M., Mica, Y., Lee, G., Studer, L., & Tomishima, M. J. (2013). Dual-SMAD inhibition/WNT activation-based methods to induce neural crest and derivatives from human pluripotent stem cells. In Human Embryonic Stem Cell Protocols (pp. 329-343). Humana Press, New York, NY.
  • Nakshatri, H., Anjanappa, M., & Bhat-Nakshatri, P. (2015). Ethnicity-dependent and-independent heterogeneity in healthy normal breast hierarchy impacts tumor characterization. Scientific reports, 5, 13526.
  • Romanazzo, S., Forte, G., Morishima, K., & Taniguchi, A. (2015). IL-12 involvement in myogenic differentiation of C2C12 in vitro. Biomaterials science, 3(3), 469-479.
  • Ji, J., Zheng, X., Forgues, M., Yamashita, T., Wauthier, E. L., Reid, L. M., Wen, X., Song, Y., Wei, J. S., Khan, J., Thorgeirsson, S. S., … Wang, X. W. (2015). Identification of microRNAs specific for epithelial cell adhesion molecule-positive tumor cells in hepatocellular carcinoma. Hepatology (Baltimore, Md.), 62(3), 829-40.
  • Linares, A. J., Lin, C. H., Damianov, A., Adams, K. L., Novitch, B. G., & Black, D. L. (2015). The splicing regulator PTBP1 controls the activity of the transcription factor Pbx1 during neuronal differentiation. Elife, 4, e09268.
  • Elo, T. (2014). Evaluation of the pluripotency of human induced pluripotent stem cells (hiPSCs) reprogrammed with integrative and non-integrative protocols and their differentiation into cardiomyocytes (Master's thesis).
  • Kraus, P., Sivakamasundari, V., Xing, X., & Lufkin, T. (2014). Generating mouse lines for lineage tracing and knockout studies. In Mouse Genetics(pp. 37-62). Humana Press, New York, NY.
  • Fattahi, F., et al. (2014) Neural Crest Cells from Dual SMAD Inhibition. Current protocols in stem cell biology, 1H-9.
  • Xu, Z., et al. (2013) PLoS One, 8(1), e53146.
  • Guo, X., Disatnik, M.-H., Monbureau, M., Shamloo, M., Mochly-Rosen, D., & Qi, X. (2013). Inhibition of mitochondrial fragmentation diminishes Huntington’s disease–associated neurodegeneration. The Journal of Clinical Investigation, 123(12), 5371–5388. http://doi.org/10.1172/JCI70911
  • Zhao, H., Sun, N., Young, S. R., Nolley, R., Santos, J., Wu, J. C., & Peehl, D. M. (2013). Induced pluripotency of human prostatic epithelial cells. PLoS One, 8(5), e64503.
  • Jerebtsova, M., Kumari, N., Xu, M., Melo, G. B. A. D., Niu, X., Jeang, K. T., & Nekhai, S. (2012). HIV-1 resistant CDK2-knockdown macrophage-like cells generated from 293T cell-derived human induced pluripotent stem cells. Biology, 1(2), 175-195.
  • Linta, L., Stockmann, M., Kleinhans, K. N., Böckers, A., Storch, A., Zaehres, H., ... & Liebau, S. (2011). Rat embryonic fibroblasts improve reprogramming of human keratinocytes into induced pluripotent stem cells. Stem cells and development, 21(6), 965-976.
  • Meng, X., Neises, A., Su, R. J., Payne, K. J., Ritter, L., Gridley, D. S., ... & Zhang, X. B. (2012). Efficient reprogramming of human cord blood CD34+ cells into induced pluripotent stem cells with OCT4 and SOX2 alone. Molecular Therapy, 20(2), 408-416.
FAQ

Frequently Asked Questions

1. For the CF-1 MEF Feeder Cells, P3 (ASF-1215), what does the word irradiated indicate? Do I still need to irradiate the cells?

The CF-1 irradiated MEF cells, P3  do not need to be irradiated again. They are already irradiated and can be used directly.

2. The datasheet mentions using CF-1 MEF cells at early passages. How many passages do you recommend using them?

We do not recommend passaging them more than P5 before irradiation because such cells do not serve as good feeders. For the same reason, we only provide P3 to ensure the quality.

3. Is it possible to amplify them in order to freeze some for use again later?

CF-1 P3, irradiated MEF cells are non-dividing cells (they have been irradiated and cannot be passaged). As feeder cells, they can attach and provide growth nutrients needed by stem cells. If you would like to grow the cells for freezing down, we recommend buying the CF-1, P2, untreated MEF cells (ASF-1201/ 1202), and do the irradiation by yourself.

Have Questions?

An Applied StemCell technical expert is happy to help, contact us today!