• Control iPSC Differentiated NSCs
    • Parental line available
    • Male or female donors
    Control iPSC Differentiated NSCs

iPSC-Neural Stem Cell (NSC)

ASC’s ready-to-use Neural Stem Cells (NSCs) are derived from human iPSC lines reprogrammed using non-integrating differentiation methods. They are ideal as controls for disease modeling experiments, and for generating physiologically relevant cell line models for cell-based therapy, and drug/ neurotoxicity screening experiments.

  • NSC lines from control iPSC line (male/ female cord blood; fibroblasts) or engineered iPSC lines
  • High purity NSCs (>90%) cells expressing neural stem cell markers: SOX1 and Nestin
  • Consistent and reliable source of differentiated isogenic, functional neurons and glial cells

Also available, neural stem cell differentiation service and optimized media/ kits for easy differentiation to high quality neural lineage cells from control iPSC lines. 

How long can NSCs be propagated in the NSC maintenance medium before they are no longer able to be efficiently differentiated into downstream lineages (neurons or astrocytes)?
I need Neural Stem Cells for an application where I need 100 million cells. Is it possible to expand your cell lines to such numbers within 5 passages?
How many vials of neural stem cells (NSCs) is recommended to differentiate into astrocyte, neuron and DOPA neuron lineages?
Products and Services
Application Notes

Characterization of neurons derived from neural stem cells (ASE-9234)


Figure 1. Expression of neuronal markers in neurons differentiated from NSC from male cord blood iPSCs (ASE-9234). Immunocytochemical characterization of neurons differentiated from NSC shows high expression of Tuj1, MAP2 and GABA neuronal markers and cells. These NSCs can therefore be differentiated to cells of a specific lineage with high purity and functionality.


Figure 2. Whole genome profiling for markers expressed by neurons derived from NSCs.

Characterization of astrocytes derived from neural stem cells (ASE-9234)


Figure 1. Immunocytochemical characterization of astrocytes derived from NSCs (ASE-9234). Astrocyte marker GFAP (Red) is expressed in > 90% of the cells while neuronal marker Tuj1 is expressed in <1% of the cells; (data not shown).


Figure 2. Whole genome profiling for markers expressed by astrocytes derived from NSCs.

Co-culturing of neurons and astrocytes to develop complex models

Neurons and astrocytes derived from Applied StemCell's NSCs can be co-cultured for developing complex research models. The cells can be isogenic differentiated cells or cells from different genetic backgrounds.


Figure. Enhanced synapse formation in neuron-astrocyte co-cultures. Co-culture of neurons and astrocytes showed a significant increase in synaptic puncta, as seen by the co-colocalization of neuronal marker (Tuj1) and synapse marker (Synapsin), as compared to neuron only cultures.

Technical Details

button-astrocytes   button-neurons   button-dopamine-neurons           

Neural Stem Cells (NSC) are multipotent cells derived from iPSCs and ESCs that are self-renewing and have potential to differentiate into various neuronal lineage cells. This makes them very attractive for in vitro patient-specific neuroscience research, whereby NSCs can be derived from patient-specific PSCs and further differentiated into CNS neurons and glial cells.

Applied StemCell offers high quality neural stem cells derived from fully characterized iPSC lines from multiple donors, for flexibility in choosing the lineage most appropriate for your research. These NSCs have been derived using integration-free, proprietary neural induction protocols, express neural stem cell markers such as PAX6, SOX1 and Nestin and form neural rosettes. The NSCs retain their multipotency and neural markers even after cryopreservation and passaging.  These fully characterized NSCs at low passage can be further differentiated to the neuronal cell type of the investigator’s choice, thus facilitating studies in cell replacement therapies and neuronal disease modeling. 



Advantages of choosing ASC’s iPSC-derived neural stem cells:

  • Different NSC lines, each derived from a single control iPSC line or engineered iPSC line: male (cord blood), female (cord blood), male (fibroblasts) and more
  • High purity (>90%) cells expressing neural stem cell markers: SOX1, PAX6 and Nestin
  • Fully characterized by immunocytochemistry and whole genome profiling
  • Provides a consistent and reliable source of differentiated mature, functional neurons and glial cells
  • Physiologically relevant cell line models


  • Neural development
  • Neurotoxicity
  • Gene Profiling during differentiation
  • Disease Modeling
  • Electrophysiology
  • Co-culture applications

Also available: Isogenic dopaminergic neuronsastrocytes, and other CNS neurons from the each control iPSC line. 

Neural Stem Cell Differentiation Services: We can differentiate your control/ patient-derived/ engineered iPSCs into neural stem cells and further into neurons and glial cells, including full characterization of your derived cell lines.


iPSC-differentiated cell lines

  • Gupta, G., Gliga, A., Hedberg, J., Serra, A., Greco, D., Odnevall Wallinder, I., & Fadeel, B. Cobalt nanoparticles trigger ferroptosis‐like cell death (oxytosis) in neuronal cells: Potential implications for neurodegenerative disease. The FASEB Journal.

  • Shaltouki, A., Sivapatham, R., Pei, Y., Gerencser, A. A., Momčilović, O., Rao, M. S., & Zeng, X. (2015). Mitochondrial alterations by PARKIN in dopaminergic neurons using PARK2 patient-specific and PARK2 knockout isogenic iPSC lines. Stem cell reports4(5), 847-859.
  • Efthymiou, A. G., Steiner, J., Pavan, W. J., Wincovitch, S., Larson, D. M., Porter, F. D., ... & Malik, N. (2015). Rescue of an in vitro neuron phenotype identified in Niemann-Pick disease, type C1 induced pluripotent stem cell-derived neurons by modulating the WNT pathway and calcium signaling. Stem cells translational medicine4(3), 230-238.
  • Efthymiou, A., Shaltouki, A., Steiner, J. P., Jha, B., Heman-Ackah, S. M., Swistowski, A., ... & Malik, N. (2014). Functional screening assays with neurons generated from pluripotent stem cell–derived neural stem cells. Journal of biomolecular screening19(1), 32-43.
  • Shaltouki, A., Peng, J., Liu, Q., Rao, M. S., & Zeng, X. (2013). Efficient generation of astrocytes from human pluripotent stem cells in defined conditions. Stem cells31(5), 941-952.

Have Questions?

An Applied StemCell technical expert is happy to help, contact us today!