• Cell Line Model Generation

Cell Line Models

We Understand Cell Lines! Leverage our expert, comprehensive CRISPR/Cas9 cell line modeling service for a stress-free research. With 1300+ unique cell line models engineered from >200 distinct mammalian cell lines, we can engineer perfectly suited cell line models for your research using highly optimized and efficient CRISPR/Cas9 genome editing strategies and protocols:

  • Engineer a variety of mutations; or correct mutations, including fusion gene(s)
  • Variety of cell lines: cancer, hard-to-transfect, blood lineage, stem cell lines and many more
  • Start-to finish cell line generation workflow; optional downstream cell line validation
  • Custom deliverables: homozygous/ heterozygous clones; point mutation with/without silent mutation
  • >97% success rate; turnaround time as fast as 2 months
Cell Line Model Generation Categories

CRISPR/Cas9
Cell Line
Service

Our CRISPR/Cas9 service uses proprietary gRNA design and protocols to genetically modify any gene of interest in hundreds of mammalian cell lines.

CRISPR/Cas9
Cell Line Model
Service

CRISPR Stem Cell
Knockout, SNV/Tag Knock-in & More
Service

Fast, accurate and efficient CRISPR editing in patient iPSCs, with single cell cloning and custom deliverables for predictive disease modeling.

CRISPR Stem Cell
Knockout, SNV/Tag Knock-in & More

CRISPR/Cas9 Cell Line
Service - Hematopoietic Cells
(Jurkat and TF-1)

Applied StemCell has optimized the CRISPR/Cas9 technology to achieve the highest success rate for genome editing of human blood lineage cell lines.

CRISPR/Cas9 Cell Line
Service - Hematopoietic Cells
(Jurkat and TF-1)

CRISPR/Cas9 Gene Fusion
Cell Line

Chromosomal rearrangement for custom fusion gene cell line models using CRISPR/Cas9

CRISPR Gene Fusion
Cell Line Generation

Support Materials
Technical Details

More than 1300 unique cell line models engineered from >200 distinct parental cell lines!

Selected list of successfully modified mammalian cell lines# by ASC:

Cell

Species

Tissue

Cell Type

Disease

Blood Lineage Cells:    

BCWM-1* Human Bone marrow Lymphoplasmacytic Waldenstrom macroglobulinemia
EML Mouse Bone marrow Basophil Normal
FTC-133 Human Thryoid Thyrocytes Follicular thyroid carcinoma
HMC1.2 Human Peripheral blood Mast cell Mast cell leukemia
Jurkat Human Peripheral blood T lymphocyte Acute T cell leukemia
Jurkat (Clone E6-1) Human Peripheral blood T lymphocyte Acute T cell leukemia
JVM2 Human Peripheral blood Lymphoblast Mantle Cell Lymphoma
K562 Human Bone Marrow Lymphoblast Chronic myelogenous leukemia (CML)
KG-1 Human Bone Lymphoblast Acute myelogenou leukemia
KHYG-1* Human Peripheral blood T lymphocyte Natural killer cell leukemia
MOLM-13  Human Peripheral blood Monocyte-like Acute myeloid leukemia
MWCL-1 Human Bone marrow Lymphoplasmacytic Waldenstrom macroglobulinemia
RAW 264.7 Mouse Ascites Macrophage Abelson murine leukemia virus-induced tumor
Sp2/0-Ag14 Mouse Spleen B lymphocyte Normal
T2 Human Blood lineage Lymphocyte  
TF-1  human Bone marrow Erythroblast Erythroleukemia
U937  Human Lymphocyte Monocyte Histiocytic lymphoma

Cancer Cell Lines:    

22RV1  Human Prostrate Epithelial Carcinoma
786-0 Human Kidney Epithelial Renal cell adenocarcinoma
A375   Human Skin Epithelial Malignant melanoma
A549 Human Lung Epithelial Carcinoma
AGS Human Stomach Epithelial Gastric adenocarcinoma
B16-F10 Mouse Skin Spindle/Epithelial-like Melanoma
CL-40  Human Colon Epithelial Colon carcinoma
CT-26 Mouse Colon Fibroblast Carcinoma
DLD-1 Human Colon Epithelial Dukes' type C, colorectal adenocarcinoma
H2030 Human Lung Epithelial Non-small cell lung cancer
H716 Human Cecum Epithelial Colorectal carcinoma
HAC15 Human Adrenal Epithelial-like Carcinoma
HBE  Human Lung Epithelial Lung cancer
HCT116 Human Colon Epithelial Colorectal carcinoma
HEK293 Human Embryonic kidney Epithelial  
HEK293T  Human Embryonic kidney Epithelial  
Hela  Human Cervix Epithelial Cervical cancer
HepG2 Human Liver Epithelial Hepatocellular carcinoma
HT1080 Human Coonective Tissue Epithelial Fibrosarcoma
HT29  Human Colon Epithelial Colorectal carcinoma
Huh7 Human Liver Epithelial Hepatocellular carcinoma
KYSE-270  Human Esophagus Epitheloid Esophageal squamous cell carcinoma
LNCaP  Human Prostrate Epithelial Prostrate adenocarcinoma
MALME-3M  Human Lung (metastatic) Fibroblast Malignant melanoma
Mc-38 Mouse Colon Epithelial Colon adenocarcinoma
MCF7  Human Mammary gland Epithelial Adenocarcinoma
mEERL Mouse Lung Epithelial Orpharyngeal squamous cell carcinoma
MKN1 Human Lymph node Epithelial Gastric adenosquamous carcinoma
Neuro-2a Mouse Brain Neuroblast Neuroblastoma
PANC1  Human Pancreas/duct Epithelial Epithelioid carcinoma
PC-3M Human Bone Epithelial Prostrate carcinoma
RCS Rat n/a Chondrocytes Chondrosarcoma
Renca Mouse Kidney Epithelial Renal adenocarcinoma
RKO Human Colon Epithelial Carcinoma
SBC-5  Human Lung n/a Small cell lung carcinoma
SCC-35 Human n/a Squamous cells Head and neck cancer
SH-SY5Y Human Bone Marrow Epithelial Neuroblastoma
SH-SY5Y (with eGFP) Human Bone Marrow Epithelial Neuroblastoma
T47D  Human Mammary gland Epithelial Ductal carcinoma
T84  Human Colon Epithelial Colorectal carcinoma
TC32 Human Bone n/a Neuroectodermal carcinoma
TOV-112D  Human Ovary Epithelial Primary adenocarcinoma
U-2 OS Human Bone Epithelial Osteosarcoma

Other Cell Lines:    

3617 Mouse Mammary gland Epithelial Normal
3T3-Swiss albino Mouse Embryo Fibroblast Normal
4T1* Mouse Mammary gland Epithelial Normal
AGMK GL37 African Green Monkey Kidney Epithelial Normal
ARPE-19 Human Eye Retinal pigmented Epithelium Normal
BEAS-2B Human Lung Epithelial Normal
BJ-hTERT Human Skin (foreskin) Fibroblast Normal
CHO-S Hamster Ovary Epithelial-like  
cTEC C9() Mouse Thymus Epithelial cTEC
Fibroblast (primary) Human   Primary fibroblast Normal
HaCaT Human Skin Keratinocyte Normal
HMEC Human Dermal endotheliym Dermal microvascular endothelium  
hTERT RPE Human Retina (pigmented epithelium) Epithelial    
IDH4  Human Lung Fibroblast IDH
MCF10  Human Mammary gland Epithelial Fibrocystic disease
NIH/3T3 Mouse Embryo Fibroblast Normal
PCCL3 Rat Thyroid Epithelium  
Podocyte Human Kidney Primary  
SW10 Mouse Neuronal Schwann cell Neuronal  

Stem Cells (iPSC/ ESC):    

Induced pluripotent stem cells (iPSC) Human PBMC/ Skin/ Cord blood PBMC/Fibroblasts Normal/ Disease
Embryonic stem cells (ESC) Human inner cell mass Embryonic stem cell Normal/ Disease
iPSC Mouse, Primate, Others Skin Fibroblast Normal
ESC Mouse, Rat, Macaque inner cell mass Embryonic stem cell Normal

* Inquire for details; # cell lines purchased by clients on ASC on behalf of clients.

Don’t see a cell line you are looking for? Ask for details. We always validate the cell lines in our cell line engineering workflow.

List of genetic modifications we can generate in your cell lines:

Gene knockout (KO): frame shift; fragment excision, stop cassette insertion, double KO

Gene editing/ correction

Gene knock-in (KI): point mutation, reporter gene, small/ large fragment insertion; locus-specific/ safe harbor locus

Gene fusion/ translocation

Controlled gene expression models: gene overexpression; conditional/ inducible gene expression; promoter modifications

Removal of viral sequences

Master cell line generation

Gene replacement; gene therapy

Don’t see a particular model you are interested in? Contact us to learn about the full scope of our expertise and get a cell line model engineered precisely to your project requirements.

Applications: 

For large DNA/ transgene insertion in cell lines, please refer to the TARGATT™ cell line editing services. The TARGATT™ integrase technology is a site-specific gene knock-in technology and is complementary to CRISPR/Cas9 technology. Both these technologies  together offer a broader scope for engineering physiologically predictive and advanced cell line models.  

We also offer lentivirus-based stable cell line generation for difficult-to-handle cell lines: integration-free lentivirus for CRISPR-lentivirus gene knockout; broad tropism lentiviruses for efficient stable gene knock-in.

Comprehensive Technology Platforms for Genome Editing

Methods

Technical Advantage

TARGATT™ 

phiC31 integrase

  • Site specific integration in "Safe harbor locus"(ROSA26)
  • High efficiency (up to 40%)
  • Works for large fragment knock-in(-22kb)
  • Insert promoter of choice for gene: overexpression and inducible expression
  • Works independent of cell division

CRISPR / Cas9

  • High specificity
  • High frequency for Knockout, point mutation
  • Large DNA knock-in up to 10kb
  • Generate homozygous or heterozygous modified cell lines
Publications
  • Panda, D., Gjinaj, E., Bachu, M., Squire, E., Novatt, H., Ozato, K., & Rabin, R. L. (2019). IRF1 maintains optimal constitutive expression of antiviral genes and regulates the early antiviral response. Frontiers in immunology10, 1019.
  • Pisapia, P., Malapelle, U., Roma, G., Saddar, S., Zheng, Q., Pepe, F., ... & Nikiforov, Y. E. (2019). Consistency and reproducibility of next‐generation sequencing in cytopathology: A second worldwide ring trial study on improved cytological molecular reference specimens. Cancer cytopathology127(5), 285-296.
  • Ilic, D. (2019). Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions in October 2018. Regenerative medicine, 14(2), 85-92.
  • Simkin, D., Searl, T. J., Piyevsky, B. N., Forrest, M., Williams, L. A., Joshi, V., ... & Penzes, P. (2019). Impaired M-current in KCNQ2 Encephalopathy Evokes Dyshomeostatic Modulation of Excitability. bioRxiv, 538371. https://doi.org/10.1101/538371.
  • Jang, Y., Choi, J., Park, N., Kang, J., Kim, M., Kim, Y., & Ju, J. H. (2019). Development of immunocompatible pluripotent stem cells via CRISPR-based human leukocyte antigen engineering. Experimental & Molecular Medicine, 51(1), 3.
  • Colomar-Carando, N., Meseguer, A., Jutz, S., Herrera-Fernández, V., Olvera, A., Kiefer, K., ... & Vicente, R. (2018). Zip6 Transporter Is an Essential Component of the Lymphocyte Activation Machinery. The Journal of Immunology, ji1800689.
  • Tanic, J. (2018). A Role for Adseverin in the Invasion and Migration of MCF7 Breast Adenocarcinoma Cells (Doctoral dissertation).
  • Lizarraga, S. B., Maguire, A. M., Ma, L., van Dyck, L. I., Wu, Q., Nagda, D., ... & Cowen, M. H. (2018). Human neurons from Christianson syndrome iPSCs reveal allele-specific responses to rescue strategies. bioRxiv, 444232.
  • Tanaka, H., Kondo, K., Chen, X., Homma, H., Tagawa, K., Kerever, A., ... & Fujita, K. (2018). The intellectual disability gene PQBP1 rescues Alzheimer’s disease pathology. Molecular Psychiatry, 1.
  • Yin, Y., Garcia, M. R., Novak, A. J., Saunders, A. M., Ank, R. S., Nam, A. S., & Fisher, L. W. (2018). Surf4 (Erv29p) binds amino-terminal tripeptide motifs of soluble cargo proteins with different affinities, enabling prioritization of their exit from the endoplasmic reticulum. PLoS biology, 16(8), e2005140.
  • Selvan, N., George, S., Serajee, F. J., Shaw, M., Hobson, L., Kalscheuer, V. M., ... & Schwartz, C. E. (2018). O-GlcNAc transferase missense mutations linked to X-linked intellectual disability deregulate genes involved in cell fate determination and signaling. Journal of Biological Chemistry, jbc-RA118.

  • Smalley, E. (2018). FDA warns public of dangers of DIY gene therapy. https://doi.org/10.1038/nbt0218-119

  • Chai, S., Wan, X., Ramirez-Navarro, A., Tesar, P. J., Kaufman, E. S., Ficker, E., ... & Deschênes, I. (2018). Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity. The Journal of clinical investigation, 128(3).

  • Boi, S., Ferrell, M. E., Zhao, M., Hasenkrug, K. J., & Evans, L. H. (2018). Mouse APOBEC3 expression in NIH 3T3 cells mediates hypermutation of AKV murine leukemia virus. Virology, 518, 377-384. https://doi.org/10.1016/j.virol.2018.03.014.

  • Molinski, S. V., et al. (2017). Orkambi® and amplifier co‐therapy improves function from a rare CFTR mutation in gene‐edited cells and patient tissue. EMBO Molecular Medicine, e201607137.

  • Petrovic, P. B. (2017). Myosin Phosphatase Rho-interacting Protein Regulates DDR1-mediated Collagen Tractional Remodeling (Doctoral dissertation, University of Toronto (Canada)).

  • Peng, L., Zhang, H., Hao, Y., Xu, F., Yang, J., Zhang, R., ... & Chen, C. (2016). Reprogramming macrophage orientation by microRNA 146b targeting transcription factor IRF5. EBioMedicine, 14, 83-96.

  • Hu, J. K., Crampton, J. C., Locci, M., & Crotty, S. (2016). CRISPR-mediated Slamf1Δ/Δ Slamf5Δ/Δ Slamf6Δ/Δ triple gene disruption reveals NKT cell defects but not T follicular helper cell defects. PloS one, 11(5), e0156074.

  • Smalley, E. (2016). CRISPR mouse model boom, rat model renaissance. Nature Biotechnology. 34, 893–894.

  • Baker, M. (2014). Gene editing at CRISPR speed. Nature biotechnology, 32(4), 309-313.

Have Questions?

An Applied StemCell technical expert is happy to help, contact us today!