• Stem Cells - iPSC and ESCs

Stem Cells - iPSC and ESCs

Applied StemCell’s stem cell division has scientists with >75 years of combined experience in stem cell technology. We provide the most comprehensive stem cell related service and product platform for every stage of your stem cell research. Our stem cell service platform makes use the latest and most optimized protocols for efficient and successful projects. Custom stem cell service encompasses stem cell generation, disease modeling, differentiation, characterization to downstream validation of your models and drug screening assays. Our stem cell product catalog includes a variety of ready-to-use, well-characterized iPSC lines, pre-differentiated isogenic panels of neural lineage cells, MEF feeder cells and stem-cell grade FBS among other ISO:9001 quality products.

Products and Services
Catalog ID#Product Name Price

41 Items

per page
Publications

iPSC Generation

  • Allende, M. L., Cook, E. K., Larman, B. C., Nugent, A., Brady, J. M., Golebiowski, D., ... & Proia, R. L. (2018). Cerebral organoids derived from Sandhoff disease induced pluripotent stem cells exhibit impaired neurodifferentiation. Journal of Lipid Research, jlr-M081323.

  • Field, A. R., Jacobs, F. M., Fiddes, I. T., Phillips, A. P., Reyes-Ortiz, A. M., LaMontagne, E., ... & Katzman, S. (2017). Structurally conserved primate lncRNAs are transiently expressed during human cortical differentiation and influence cell type specific genes. bioRxiv, 232553.

Safe Harbor Locus Master iPSC Generation with TARGATT™

  • Karow, M., Chavez, C. L., Farruggio, A. P., Geisinger, J. M., Keravala, A., Jung, W. E., ... & Calos, M. P. (2011). Site‐Specific Recombinase Strategy to Create Induced Pluripotent Stem Cells Efficiently with Plasmid DNA. Stem Cells, 29(11), 1696-1704.

  • Zhu, F., Gamboa, M., Farruggio, A. P., Hippenmeyer, S., Tasic, B., Schüle, B., ... & Calos, M. P. (2013). DICE, an efficient system for iterative genomic editing in human pluripotent stem cells. Nucleic acids research, 42(5), e34-e34.

iPSC Disease Modeling

Teratoma Analysis, iPSC Characterization

Teratoma Formation Assay (Published reports of ASC's Teratoma Formation Analysis Reports can be found in the Certificate of Analysis "Induced Pluripotent Stem Cells (iPSCs)" by Coriell Institute for Medical Research.)

References (*cited/published articles)

  • Ou, J., Ball, J. M., Luan, Y., Zhao, T., Miyagishima, K. J., Xu, Y., ... & Mallon, B. S. (2018). iPSCs from a Hibernator Provide a Platform for Studying Cold Adaptation and Its Potential Medical Applications. Cell, 173(4), 851-863. https://doi.org/10.1016/j.cell.2018.03.010

  • Teves, S. S., An, L., Bhargava-Shah, A., Xie, L., Darzacq, X., & Tjian, R. (2018). A stable mode of bookmarking by TBP recruits RNA Polymerase II to mitotic chromosomes. bioRxiv, 257451. DOI: 10.1101/257451

  • Hansen, A. S., Pustova, I., Cattoglio, C., Tjian, R., & Darzacq, X. (2017). CTCF and cohesin regulate chromatin loop stability with distinct dynamics. Elife, 6.

  • Vermilyea, S. C., Guthrie, S., Meyer, M., Smuga-Otto, K., Braun, K., Howden, S., ... & Golos, T. G. (2017). Induced Pluripotent Stem Cell-Derived Dopaminergic Neurons from Adult Common Marmoset Fibroblasts. Stem cells and development, 26(17), 1225-1235. https://doi.org/10.1089/scd.2017.0069.

  • Teves, S. S., An, L., Hansen, A. S., Xie, L., Darzacq, X., & Tjian, R. (2016). A dynamic mode of mitotic bookmarking by transcription factors. Elife, 5.

  • Laskowski, T. J., Van Caeneghem, Y., Pourebrahim, R., Ma, C., Ni, Z., Garate, Z., ... & Segovia, J. C. (2016). Gene correction of iPSCs from a Wiskott-Aldrich syndrome patient normalizes the lymphoid developmental and functional defects. Stem cell reports, 7(2), 139-148.

  • Boza-Morán, M. G., Martínez-Hernández, R., Bernal, S., Wanisch, K., Also-Rallo, E., Le Heron, A., ... & Tizzano, E. F. (2015). Decay in survival motor neuron and plastin 3 levels during differentiation of iPSC-derived human motor neurons. Scientific reports, 5, 11696.

  • Romero, I. G., Pavlovic, B. J., Hernando-Herraez, I., Zhou, X., Ward, M. C., Banovich, N. E., ... & Chavarria, C. I. (2015). A panel of induced pluripotent stem cells from chimpanzees: a resource for comparative functional genomics. Elife, 4.

  • Cheung, H. S., Pelaez, D., & Huang, C. C. (2015). U.S. Patent Application No. 14/382,287.

  • Chakravarti, D., Su, X., Cho, M. S., Bui, N. H. B., Coarfa, C., Venkatanarayan, A., ... & Leung, M. L. (2014). Induced multipotency in adult keratinocytes through down-regulation of ΔNp63 or DGCR8. Proceedings of the National Academy of Sciences, 111(5), E572-E581.

  • Lee, J., Kim, Y., Yi, H., Diecke, S., Kim, J., Jung, H., ... & Park, S. H. (2014). Generation of disease-specific induced pluripotent stem cells from patients with rheumatoid arthritis and osteoarthritis. Arthritis research & therapy, 16(1), R41.

  • Quang, T., Marquez, M., Blanco, G., & Zhao, Y. (2014). Dosage and cell line dependent inhibitory effect of bFGF supplement in human pluripotent stem cell culture on inactivated human mesenchymal stem cells. PloS one, 9(1), e86031.

  • Jumabay, M., Abdmaulen, R., Ly, A., Cubberly, M. R., Shahmirian, L. J., Heydarkhan-Hagvall, S., ... & Boström, K. I. (2014). Pluripotent stem cells derived from mouse and human white mature adipocytes. Stem cells translational medicine, 3(2), 161-171.

  • Sanders, L. H., Laganière, J., Cooper, O., Mak, S. K., Vu, B. J., Huang, Y. A., ... & Langston, J. W. (2014). LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson's disease patients: reversal by gene correction. Neurobiology of disease, 62, 381-386.

  • Sun, N., & Zhao, H. (2014). Seamless correction of the sickle cell disease mutation of the HBB gene in human induced pluripotent stem cells using TALENs. Biotechnology and bioengineering, 111(5), 1048-1053.

  • Lee, P., Martin, N. T., Nakamura, K., Azghadi, S., Amiri, M., Ben-David, U., ... & Lowry, W. E. (2013). SMRT compounds abrogate cellular phenotypes of ataxia telangiectasia in neural derivatives of patient-specific hiPSCs. Nature communications, 4, 1824.

  • Buccini, S. M. (2013). Doctoral dissertation, University of Cincinnati.

  • Pelaez, D., Huang, C. Y. C., & Cheung, H. S. (2013). Isolation of pluripotent neural crest-derived stem cells from adult human tissues by connexin-43 enrichment. Stem cells and development, 22(21), 2906-2914.

  • Cassidy, L., Choi, M., Meyer, J., Chang, R., & Seigel, G. M. (2013). Immunoreactivity of Pluripotent Markers SSEA-5 and L1CAM in Human Tumors, Teratomas, and Induced Pluripotent Stem Cells. Journal of Biomarkers, 2013, 960862. http://doi.org/10.1155/2013/960862.

  • Cooper, O., Seo, H., Andrabi, S., Guardia-Laguarta, C., Graziotto, J., Sundberg, M., … Isacson, O. (2012). Familial Parkinson’s disease iPSCs show cellular deficits in mitochondrial responses that can be pharmacologically rescued. Science Translational Medicine, 4(141), 141ra90. http://doi.org/10.1126/scitranslmed.3003985.

  • Zheng, Z., Jian, J., Zhang, X., Zara, J. N., Yin, W., Chiang, M., ... & Soo, C. (2012). Reprogramming of human fibroblasts into multipotent cells with a single ECM proteoglycan, fibromodulin. Biomaterials, 33(24), 5821-5831.

  • Almeida, S., Zhang, Z., Coppola, G., Mao, W., Futai, K., Karydas, A., ... & Sena-Esteves, M. (2012). Induced pluripotent stem cell models of progranulin-deficient frontotemporal dementia uncover specific reversible neuronal defects. Cell reports, 2(4), 789-798.

  • Zhang, W. Y., de Almeida, P. E., & Wu, J. C. (2012). Teratoma formation: A tool for monitoring pluripotency in stem cell research. StemBook.

  • Jing, L., Christoforou, N., Leong, K. W., Setton, L. A., & Chen, J. (2012). Differentiation potential of human induced pluripotent stem cells (iPSCs) to nucleus pulposus-like cells in vitro. Global Spine Journal, 2(1_suppl), s-0032.

  • Valamehr, B., Abujarour, R., Robinson, M., Le, T., Robbins, D., Shoemaker, D., & Flynn, P. (2012). A novel platform to enable the high-throughput derivation and characterization of feeder-free human iPSCs. Scientific reports, 2, 213.

  • Chen, K. G., Mallon, B. S., Hamilton, R. S., Kozhich, O. A., Park, K., Hoeppner, D. J., ... & McKay, R. D. (2012). Non-colony type monolayer culture of human embryonic stem cells. Stem cell research, 9(3), 237-248.

  • Telugu, B. P. V. L., Ezashi, T., Sinha, S., Alexenko, A. P., Spate, L., Prather, R. S., & Roberts, R. M. (2011). Leukemia Inhibitory Factor (LIF)-dependent, Pluripotent Stem Cells Established from Inner Cell Mass of Porcine Embryos. The Journal of Biological Chemistry, 286(33), 28948–28953. http://doi.org/10.1074/jbc.M111.229468.

  • Deleidi, M., Hargus, G., Hallett, P., Osborn, T., & Isacson, O. (2011). Development of histocompatible primate induced pluripotent stem cells for neural transplantation. Stem Cells (Dayton, Ohio), 29(7), 1052–1063. http://doi.org/10.1002/stem.662

Karyotyping (*cited/published articles)

  • Zhao, L., Teklemariam, T., & Hantash, B. M. (2014). Heterelogous expression of mutated HLA-G decreases immunogenicity of human embryonic stem cells and their epidermal derivatives. Stem cell research, 13(2), 342-354.

  • Sun, N., & Zhao, H. (2014). Seamless correction of the sickle cell disease mutation of the HBB gene in human induced pluripotent stem cells using TALENs. Biotechnology and bioengineering, 111(5), 1048-1053.

  • An, M. C., Zhang, N., Scott, G., Montoro, D., Wittkop, T., Mooney, S., ... & Ellerby, L. M. (2012). Genetic correction of Huntington's disease phenotypes in induced pluripotent stem cells. Cell stem cell, 11(2), 253-263.

Zheng, Z., Jian, J., Zhang, X., Zara, J. N., Yin, W., Chiang, M., ... & Soo, C. (2012). Reprogramming of human fibroblasts into multipotent cells with a single ECM proteoglycan, fibromodulin. Biomaterials, 33(24), 5821-5831.

iPSC/ESCs

ASE-9109: Normal iPSC differentiation to cardiomyocytes

  • Kavyasudha C., Macrin D., ArulJothi K.N., Joseph J.P., Harishankar M.K., Devi A. (2018) Clinical Applications of Induced Pluripotent Stem Cells – Stato Attuale. In: Advances in Experimental Medicine and Biology. Springer, New York, NY.https://doi.org/10.1007/5584_2018_173.

  • Lin, Y., Linask, K. L., Mallon, B., Johnson, K., Klein, M., Beers, J., ... & Zou, J. (2017). Heparin Promotes Cardiac Differentiation of Human Pluripotent Stem Cells in Chemically Defined Albumin‐Free Medium, Enabling Consistent Manufacture of Cardiomyocytes. Stem cells translational medicine6(2), 527-538.

ASE-9208: Sporadic Parkinson’s disease line

  • Hsieh, C. H., Shaltouki, A., Gonzalez, A. E., da Cruz, A. B., Burbulla, L. F., Lawrence, E. S., ... & Wang, X. (2016). Functional impairment in Miro degradation and mitophagy is a shared feature in familial and sporadic Parkinson’s disease. Cell Stem Cell19(6), 709-724.

Human iPSCs: iPSCs from ALS8 patient and non-carrier siblings

  • Mitne-Neto, M., Machado-Costa, M., Marchetto, M. C., Bengtson, M. H., Joazeiro, C. A., Tsuda, H., ... & Muotri, A. R. (2011). Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients. Human molecular genetics20(18), 3642-3652.

iPSC-derived cardiomyocyte

  • Daily, N. J., et al. (2017). High-Throughput Phenotyping of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Neurons Using Electric Field Stimulation and High-Speed Fluorescence Imaging. ASSAY and Drug Development Technologies. 15(4): 178-188. https://doi.org/10.1089/adt.2017.781

  • Daily, N. J., Santos, R., Vecchi, J., Kemanli, P., & Wakatsuki, T. (2017). Calcium transient assays for compound screening with human iPSC-derived cardiomyocytes: Evaluating new tools. Journal of evolving stem cell research, 1(2), 1.

  • Daily, N. J., et al. (2015). Journal of Bioengineering & Biomedical Science, 2015.

Mouse/ Rat/ Pig/ Guinea Pig

MyEZGel™ 3D-Matrix

  • Li, L., & LaBarbera, D. V. (2017). 3D High-Content Screening of Organoids for Drug Discovery. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. 388-415. doi.org/10.1016/B978-0-12-409547-2.12329-7

MEF Feeder Cells

DR4 MEF Feeder Cells (*cited/published articles)

  • Fogarty, N. M., McCarthy, A., Snijders, K. E., Powell, B. E., Kubikova, N., Blakeley, P., ... & Maciulyte, V. (2017). Genome editing reveals a role for OCT4 in human embryogenesis. Nature, 550(7674), 67-73.

  • Molokanova, O., Schönig, K., Weng, S. Y., Wang, X., Bros, M., Diken, M., ... & Eshkind, L. (2017). Inducible knockdown of procollagen I protects mice from liver fibrosis and leads to dysregulated matrix genes and attenuated inflammation. Matrix Biologyhttps://doi.org/10.1016/j.matbio.2017.11.002.

  • Marttila, S. (2017). Establishment and characterisation of new human induced pluripotent stem cell lines and cardiomyocyte differentiation: a comparative view. Master’s Thesis, University of Tampere, May 2017.

  • Honda, A., Kawano, Y., Izu, H., Choijookhuu, N., Honsho, K., Nakamura, T., ... & Sankai, T. (2017). Discrimination of stem cell status after subjecting cynomolgus monkey pluripotent stem cells to naive conversion. Scientific reports7, 45285.

  • Friedel, T., Jung-Klawitter, S., Sebe, A., Schenk, F., Modlich, U., Ivics, Z., ... & Schneider, I. C. (2016). CD30 Receptor-Targeted Lentiviral Vectors for Human Induced Pluripotent Stem Cell-Specific Gene Modification. Stem cells and development25(9), 729-739.

  • Ludwig, M., Kitzenberg, D., & Chick, W. S. (2015). Forward Genetic Approach to Uncover Stress Resistance Genes in Mice—A High-throughput Screen in ES Cells. Journal of visualized experiments: JoVE, (105).

  • Neri, T., Muggeo, S., Paulis, M., Caldana, M. E., Crisafulli, L., Strina, D., ... & Scanziani, E. (2015). Targeted gene correction in osteopetrotic-induced pluripotent stem cells for the generation of functional Osteoclasts. Stem cell reports5(4), 558-568.

  • Kraus, P., Sivakamasundari, V., Xing, X., & Lufkin, T. (2014). Generating mouse lines for lineage tracing and knockout studies. In Mouse Genetics(pp. 37-62). Humana Press, New York, NY.

  • Zhu, F., Gamboa, M., Farruggio, A. P., Hippenmeyer, S., Tasic, B., Schüle, B., ... & Calos, M. P. (2013). DICE, an efficient system for iterative genomic editing in human pluripotent stem cells. Nucleic acids research42(5), e34-e34.

  • Ivics, Z., Izsvák, Z., Chapman, K. M., & Hamra, F. K. (2011). Sleeping Beauty transposon mutagenesis of the rat genome in spermatogonial stem cells. Methods53(4), 356-365.

  • Ivics, Z., Izsvák, Z., Medrano, G., Chapman, K. M., & Hamra, F. K. (2011). Sleeping Beauty transposon mutagenesis in rat spermatogonial stem cells. Nature protocols6(10), 1521.

  • Pan, Y. (2011). Culturing of C57BL/6 Mouse Embryonic Stem (ES) Cell Line. Bio-protocol Bio101: e142. DOI: 10.21769/BioProtoc.142.

  • Chapman, K. M., Saidley-Alsaadi, D., Syvyk, A. E., Shirley, J. R., Thompson, L. M., & Hamra, F. K. (2011). Rat spermatogonial stem cell-mediated gene transfer. In Advanced Protocols for Animal Transgenesis (pp. 237-266). Springer, Berlin, Heidelberg.

CF-1 MEF Feeder Cells (*cited/published articles)

Neo-resistant MEF Feeder Cells (*cited/published articles)

SNL 76/7 (STO Cell Line)

ESC-Sure™ FBS

  • Hodges, H. C., Stanton, B. Z., Cermakova, K., Chang, C. Y., Miller, E. L., Kirkland, J. G., ... & Crabtree, G. R. (2017). Dominant-negative SMARCA4 mutants alter the accessibility landscape of tissue-unrestricted enhancers. Nature Structural & Molecular Biology, 1.

  • Braun, S. M. G., Kirkland, J. G., Chory, E. J., Husmann, D., Calarco, J. P., & Crabtree, G. R. (2017). Rapid and reversible epigenome editing by endogenous chromatin regulators. Nature Communications, 8, 560.http://doi.org/10.1038/s41467-017-00644-y.s

  • Dykhuizen, E. C., Carmody, L. C., & Tolliday, N. J. (2017). High-Throughput Screening of Small Molecule Transcriptional Regulators in Embryonic Stem Cells Using qRT-PCR. In Epigenetics and Gene Expression in Cancer, Inflammatory and Immune Diseases (pp. 81-95). Humana Press, New York, NY.

  • Stanton, B. Z., Hodges, C., Calarco, J. P., Braun, S. M. G., Ku, W. L., Kadoch, C., … Crabtree, G. R. (2017). SMARCA4 ATPase mutations disrupt direct eviction of PRC1 from chromatin. Nature Genetics49(2), 282–288. http://doi.org/10.1038/ng.3735

  • Beske, P. H., Bradford, A. B., Grynovicki, J. O., Glotfelty, E. J., Hoffman, K. M., Hubbard, K. S., ... & McNutt, P. M. (2015). Botulinum and tetanus neurotoxin-induced blockade of synaptic transmission in networked cultures of human and rodent neurons. Toxicological Sciences149(2), 503-515. doi: 10.1093/toxsci/kfv254

  • Miljan, E. (2015) The Business of Stem Cell Research Tools, in Stem Cells in Regenerative Medicine: Science, regulation and business strategies (eds A. A. Vertès, N. Qureshi, A. I. Caplan and L. E. Babiss), John Wiley & Sons, Ltd, Chichester, UK. doi: 10.1002/9781118846193.ch8.

  • Hubbard, K., Beske, P., Lyman, M., & McNutt, P. (2015). Functional evaluation of biological neurotoxins in networked cultures of stem cell-derived central nervous system neurons. Journal of visualized experiments: JoVE, (96).

  • Stanford Medicine Transgenic Research center (http://med.stanford.edu/transgenic/esmeflif.html)

  • Hathaway, N. A., Bell, O., Hodges, C., Miller, E. L., Neel, D. S., & Crabtree, G. R. (2012). Dynamics and memory of heterochromatin in living cells. Cell149(7), 1447-1460.

Medium

ESC-Sure™ Serum-/Feeder- Free hESC/iPSC Culture Medium (SFFM)-  *cited/published articles

  • *Chai, S., Wan, X., Ramirez-Navarro, A., Tesar, P. J., Kaufman, E. S., Ficker, E., ... & Deschênes, I. (2018). Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity. The Journal of clinical investigation128(3).

  • Szabo, AZ., et al. (2013) Stem Cells. 31(4):786-99

ESC-Sure™ mESC Complete Medium (*cited/published articles)

  • Okada, A., et al. (2016) Embryonic Stem Cell Protocols, 181-195.

ESC-Sure™ Basal Medium Mouse DMEM

Technical Details

schematic-iPSc

Some of our popular services include:

Also explore our catalog for some popular products:

Have Questions?

An Applied StemCell technical expert is happy to help, contact us today!