• Stem Cell

Stem Cell

Applied StemCell has a comprehensive catalog of products for every aspect of your stem cell research:

  • Ready-to-use induced pluripotent stem cell (iPSC).
  • iPSC-derived differentiated neural lineage cells.
  • For the more hands-on researcher, we offer protocols and kits for iPSC generation to generate your own iPSCs.
  • To help you maintain your stem cells, we also offer high quality and thoroughly tested mouse embryonic fibroblasts (MEF) feeder cells, and stem cell-grade “pre-validated“ FBS.
Stem Cell Categories

iPSC & ESC Lines

iPSC & ESC Lines

Ready-to-use, fully characterized human iPSCs from different sources and clinical conditions, iPSC from other mammalian species, and mouse ESC lines.

iPSC & ESC Lines

iPSC Differentiated Cells

We offer fully-characterized iPSC-differentiated progenitors and cell lines: Neural stem cells (NSC), neurons, astrocytes, and cardiomyocytes.

iPSC Differentiated Cells

Genome Edited iPSC Lines

Control iPSC-derived isogenic panels of neuronal gene knockout, lineage-specific reporter knock-in, and safe harbor locus reporter knock-in iPSC lines.

Genome Edited iPSC Lines

Stem Cell Culture:
MEF Feeder Cells, FBS

Validated, high quality MEF feeders and ESC-Sure™ FBS for robust growth of your stem cells.

Stem Cell Culture:
MEF Feeder Cells, ESC-Grade FBS

iPSC Generation
Kit

Reprogram your own iPSCs from your somatic cells using either our Human EZ- iPSC Retroviral or Episomal Generation kits.

iPSC Generation
Kit

Products and Services
Support Materials
Publications

iPSC/ESCs

Control iPSC Lines:

  • Tanaka, H., Homma, H., Fujita, K., Kondo, K., Yamada, S., Jin, X., ... & Atsuta, N. (2020). YAP-dependent necrosis occurs in early stages of Alzheimer’s disease and regulates mouse model pathology. Nature Communications, 11(1), 1-22
  • Su, S., Guntur, A. R., Nguyen, D. C., Fakory, S. S., Doucette, C. C., Leech, C., ... & Sims-Lucas, S. (2018). A renewable source of human beige adipocytes for development of therapies to treat metabolic syndrome. Cell reports25(11), 3215-3228.
  • Lizarraga, S. B., Maguire, A. M., Ma, L., van Dyck, L. I., Wu, Q., Nagda, D., ... & Cowen, M. H. (2018). Human neurons from Christianson syndrome iPSCs reveal allele-specific responses to rescue strategies. bioRxiv, 444232.
  • Tanaka, H., Kondo, K., Chen, X., Homma, H., Tagawa, K., Kerever, A., ... & Fujita, K. (2018). The intellectual disability gene PQBP1 rescues Alzheimer’s disease pathology. Molecular Psychiatry, 1.
  • Kavyasudha C., Macrin D., ArulJothi K.N., Joseph J.P., Harishankar M.K., Devi A. (2018) Clinical Applications of Induced Pluripotent Stem Cells – Stato Attuale. In: Advances in Experimental Medicine and Biology. Springer, New York, NY. https://doi.org/10.1007/5584_2018_173.
  • Lin, Y., Linask, K. L., Mallon, B., Johnson, K., Klein, M., Beers, J., ... & Zou, J. (2017). Heparin Promotes Cardiac Differentiation of Human Pluripotent Stem Cells in Chemically Defined Albumin‐Free Medium, Enabling Consistent Manufacture of Cardiomyocytes. Stem cells translational medicine6(2), 527-538.

iPSC-differentiated cell lines

  • Gupta, G., Gliga, A., Hedberg, J., Serra, A., Greco, D., Odnevall Wallinder, I., & Fadeel, B. Cobalt nanoparticles trigger ferroptosis‐like cell death (oxytosis) in neuronal cells: Potential implications for neurodegenerative disease. The FASEB Journal.
  • Kussauer, S., David, R., & Lemcke, H. (2019). hiPSCs Derived Cardiac Cells for Drug and Toxicity Screening and Disease Modeling: What Micro-Electrode-Array Analyses Can Tell Us. Cells8(11), 1331.
  • Cheng, F., Fransson, L. Å., & Mani, K. (2019). The cyanobacterial neurotoxin β-N-methylamino-l-alanine prevents addition of heparan sulfate to glypican-1 and increases processing of amyloid precursor protein in dividing neuronal cells. Experimental Cell Research. https://doi.org/10.1016/j.yexcr.2019.03.041
  • Daily, N. J., et al. (2017). High-Throughput Phenotyping of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Neurons Using Electric Field Stimulation and High-Speed Fluorescence Imaging. ASSAY and Drug Development Technologies. 15(4): 178-188. https://doi.org/10.1089/adt.2017.781
  • Daily, N. J., Santos, R., Vecchi, J., Kemanli, P., & Wakatsuki, T. (2017). Calcium transient assays for compound screening with human iPSC-derived cardiomyocytes: Evaluating new tools. Journal of evolving stem cell research, 1(2), 1.
  • Daily, N. J., et al. (2015). Journal of Bioengineering & Biomedical Science, 2015.

MEF Feeder Cells

DR4 MEF Feeder Cells

  • Okubo, T., Hayashi, R., Shibata, S., Kudo, Y., Ishikawa, Y., Inoue, S., ... & Nishida, K. (2020). Generation and validation of a PITX2–EGFP reporter line of human induced pluripotent stem cells enables isolation of periocular mesenchymal cells. Journal of Biological Chemistry295(11), 3456-3465.
  • Ruiz-Gutierrez, M., Bölükbaşı, Ö. V., Alexe, G., Kotini, A. G., Ballotti, K., Joyce, C. E., ... & Papapetrou, E. P. (2019). Therapeutic discovery for marrow failure with MDS predisposition using pluripotent stem cells. JCI insight4(12).
  • Wagner, M., Yoshihara, M., Douagi, I., Damdimopoulos, A., Panula, S., Petropoulos, S., ... & Hovatta, O. (2020). Single-cell analysis of human ovarian cortex identifies distinct cell populations but no oogonial stem cells. Nature communications11(1), 1-15.
  • Takahashi, M., & Yamazaki, S. (2019). Generation of a human induced pluripotent stem cell line, IMSUTi002-A-1, harboring the leukemia-specific fusion gene ETV6-RUNX1. Stem cell research40, 101546.
  • Gruzdev, A., Scott, G. J., Hagler, T. B., & Ray, M. K. (2019). CRISPR/Cas9-Assisted Genome Editing in Murine Embryonic Stem Cells. In Mouse Models of Innate ImmunityHumana Press, New York, NY. 1690:1-21.
  • Snijders, K. E., Cooper, J. D., Vallier, L., & Bertero, A. (2019). Conditional Gene Knockout in Human Cells with Inducible CRISPR/Cas9. In: Luo Y. (eds) CRISPR Gene Editing. Methods in Molecular Biology, Humana Press, New York, NY. 1961:185-209.
  • Tan, C. E. H. (2018). Establishing a genetically engineered mouse ES cell line expressing an inducible Xist transgene along chromosome 19 (Doctoral dissertation).
  • Fogarty, N. M., McCarthy, A., Snijders, K. E., Powell, B. E., Kubikova, N., Blakeley, P., ... & Maciulyte, V. (2017). Genome editing reveals a role for OCT4 in human embryogenesis. Nature, 550(7674), 67-73.
  • Molokanova, O., Schönig, K., Weng, S. Y., Wang, X., Bros, M., Diken, M., ... & Eshkind, L. (2017). Inducible knockdown of procollagen I protects mice from liver fibrosis and leads to dysregulated matrix genes and attenuated inflammation. Matrix Biologyhttps://doi.org/10.1016/j.matbio.2017.11.002.
  • Marttila, S. (2017). Establishment and characterisation of new human induced pluripotent stem cell lines and cardiomyocyte differentiation: a comparative view. Master’s Thesis, University of Tampere, May 2017.
  • Honda, A., Kawano, Y., Izu, H., Choijookhuu, N., Honsho, K., Nakamura, T., ... & Sankai, T. (2017). Discrimination of stem cell status after subjecting cynomolgus monkey pluripotent stem cells to naive conversion. Scientific reports, 7, 45285.

For more references, visit our reference page.


CF-1 MEF Feeder Cells

  • Thakurela, S., Sindhu, C., Yurkovsky, E., Riemenschneider, C., Smith, Z. D., Nachman, I., & Meissner, A. (2019). Differential regulation of OCT4 targets facilitates reacquisition of pluripotency. Nature communications10(1), 1-11.
  • Smela, M. P., Sybirna, A., Wong, F. C., & Surani, M. A. (2019). Testing the role of SOX15 in human primordial germ cell fate. Wellcome open research4.
  • Spada, F., Schiffers, S., Kirchner, A., Zhang, Y., Kosmatchev, O., Korytiakova, E., ... & Carell, T. (2019). Oxidative and non-oxidative active turnover of genomic methylcytosine in distinct pluripotent states. BioRxiv, 846584.
  • Kiamehr, M., Klettner, A., Richert, E., Koskela, A., Koistinen, A., Skottman, H., ... & Juuti-Uusitalo, K. (2019). Compromised Barrier Function in Human Induced Pluripotent Stem-Cell-Derived Retinal Pigment Epithelial Cells from Type 2 Diabetic Patients. International journal of molecular sciences20(15), 3773.
  • Barber, K., Studer, L., & Fattahi, F. (2019). Derivation of enteric neuron lineages from human pluripotent stem cells. Nature protocols, 14:1261–1279.
  • Berecz, T., Husvéth-Tóth, M., Mioulane, M., Merkely, B., Apáti, Á., & Földes, G. (2019). Generation and Analysis of Pluripotent Stem Cell-Derived Cardiomyocytes and Endothelial Cells for High Content Screening Purposes. In: Methods in Molecular Biology. Humana Press.
  • Madak-Erdogan, Z., Band, S., Zhao, Y. C., Smith, B. P., Kulkoyluoglu-Cotul, E., Zuo, Q., ... & Kim, S. H. (2019). Free fatty acids rewire cancer metabolism in obesity-associated breast cancer via estrogen receptor and mTOR signaling. Cancer research, canres-2849.
  • Deuse, T., Hu, X., Gravina, A., Wang, D., Tediashvili, G., De, C., ... & Davis, M. M. (2019). Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nature biotechnology, 1.
  • Kiamehr, M. (2019). Induced pluripotent stem cell-derived hepatocyte-like cells: The lipid status in differentiation, functionality, and de-differentiation of hepatic cells. Tampere University Dissertations.
  • Yeom, K. H., Mitchell, S., Linares, A. J., Zheng, S., Lin, C. H., Wang, X. J., ... & Black, D. L. (2018). Polypyrimidine Tract Binding Protein blocks microRNA-124 biogenesis to enforce its neuronal specific expression. bioRxiv, 297515https://doi.org/10.1101/297515
  • Chai, S., Wan, X., Ramirez-Navarro, A., Tesar, P. J., Kaufman, E. S., Ficker, E., ... & Deschênes, I. (2018). Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity. The Journal of Clinical Investigation, 128(3). DOI: 10.1172/JCI94996
  • Oh, Y., Zhang, F., Wang, Y., Lee, E. M., Choi, I. Y., Lim, H., ... & Wu, H. (2017). Zika virus directly infects peripheral neurons and induces cell death. Nature Neuroscience, 20(9), 1209-1212.
  • Kiamehr, M., Viiri, L. E., Vihervaara, T., Koistinen, K. M., Hilvo, M., Ekroos, K., ... & Aalto-Setälä, K. (2017). Lipidomic profiling of patient-specific induced pluripotent stem cell-derived hepatocyte-like cells. Disease Models & Mechanisms, dmm-030841.
  • Wong, K. G., et al. (2017). CryoPause: A New Method to Immediately Initiate Experiments after Cryopreservation of Pluripotent Stem Cells. http://www.cell.com/stem-cell-reports/pdfExtended/S2213-6711(17)30217-5.
  • Cvetkovic, C., et al. (2017). A 3D-printed platform for modular neuromuscular motor units. Microsystems & Nanoengineering, 3, 17015.
  • Kurapati, S., et al. (2017). Role of JNK pathway in varicella-zoster virus lytic infection and reactivation. Journal of Virology, JVI-00640.
  • Kotini, A. G., Chang, C. J., Chow, A., Yuan, H., Ho, T. C., Wang, T., ... & Teruya-Feldstein, J. (2017). Stage-specific human induced pluripotent stem cells map the progression of myeloid transformation to transplantable leukemia. Cell Stem Cell, 20(3), 315-328.
  • Maghen, L., Shlush, E., Gat, I., Filice, M., Barretto, T. A., Jarvi, K., ... & Librach, C. L. (2017). Human umbilical perivascular cells (HUCPVCs): a novel source of mesenchymal stromal-like (MSC) cells to support the regeneration of the testicular niche. Reproduction, 153(1), 85-95.

For more references, visit our reference page..


Neo-resistant MEF Feeder Cells

  • Mansour, A. A., Gonçalves, J. T., Bloyd, C. W., Li, H., Fernandes, S., Quang, D., ... & Gage, F. H. (2018). An in vivo model of functional and vascularized human brain organoids. Nature biotechnology, 36(5), 432. doi:10.1038/nbt.4127
  • Heim, C. N., Fanslow, D. A., & Dann, C. T. (2012). Development of quantitative microscopy-based assays for evaluating dynamics of living cultures of mouse spermatogonial stem/progenitor cells. Biology of reproduction, 87(4), 90-1.
  • Mauney, J. R., Ramachandran, A., Richard, N. Y., Daley, G. Q., Adam, R. M., & Estrada, C. R. (2010). All-trans retinoic acid directs urothelial specification of murine embryonic stem cells via GATA4/6 signaling mechanisms. PloS one, 5(7), e11513.

SNL 76/7 (STO Cell Line)

  • Yang, J., Ryan, D. J., Lan, G., Zou, X., & Liu, P. (2019). In vitro establishment of expanded-potential stem cells from mouse pre-implantation embryos or embryonic stem cells. Nature protocols, 1.
  • Kime, C., Rand, T. A., Ivey, K. N., Srivastava, D., Yamanaka, S., & Tomoda, K. (2015). Practical integration‐free episomal methods for generating human induced pluripotent stem cells. Current protocols in human genetics, 87(1), 21-2.
  • Takahashi, K., Narita, M., Yokura, M., Ichisaka, T., & Yamanaka, S. (2009). Human induced pluripotent stem cells on autologous feeders. PloS one, 4(12), e8067.
  • Park, I. H., & Daley, G. Q. (2009). Human iPS cell derivation/reprogramming. Current protocols in stem cell biology8(1), 4A-1.
  • Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448(7151), 313.
  • Takahashi, K., Okita, K., Nakagawa, M., & Yamanaka, S. (2007). Induction of pluripotent stem cells from fibroblast cultures. Nature protocols, 2(12), 3081.
  • McMahon, A. P., & Bradley, A. (1990). The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell, 62(6), 1073-1085.

ESC-Sure™ FBS

  • Chory, E. J., Kirkland, J. G., Chang, C. Y., D'Andrea, V., Gourisankar, S., Dykhuizen, E. J., & Crabtree, G. J. (2019). Inhibition of a Selective SWI/SNF Function Synergizes with ATR Inhibitors in Cancer Cell Killing. bioRxiv, 660456.
  • Lv, Y., Xiao, F. J., Wang, Y., Zou, X. H., Wang, H., Wang, H. Y., ... & Lu, Z. Z. (2019). Efficient gene transfer into T lymphocytes by fiber-modified human adenovirus 5. BMC biotechnology19(1), 23.
  • Paynter, J. M., Chen, J., Liu, X., & Nefzger, C. M. (2019). Propagation and maintenance of mouse embryonic stem cells. In Mouse Cell Culture, vol 1940  (pp. 33-45). Humana Press, New York, NY.
  • Chory, E. J., Calarco, J. P., Hathaway, N. A., Bell, O., Neel, D. S., & Crabtree, G. R. (2019). Nucleosome turnover regulates histone methylation patterns over the genome. Molecular cell, 73(1), 61-72.
  • Gatchalian, J., Malik, S., Ho, J., Lee, D. S., Kelso, T. W., Shokhirev, M. N., ... & Hargreaves, D. C. (2018). A non-canonical BRD9-containing BAF chromatin remodeling complex regulates naive pluripotency in mouse embryonic stem cells. Nature communications, 9(1), 5139.
  • Chory, E. J., Calarco, J. P., Hathaway, N. A., Bell, O., Neel, D. S., & Crabtree, G. R. (2018). Nucleosome Turnover Regulates Histone Methylation Patterns over the Genome. Molecular cell.
  • Marian, C. A., Stoszko, M., Wang, L., Leighty, M. W., de Crignis, E., Maschinot, C. A., ... & Duvall, J. R. (2018). Small Molecule Targeting of Specific BAF (mSWI/SNF) Complexes for HIV Latency Reversal. Cell Chemical Biology
  • Hodges, H. C., Stanton, B. Z., Cermakova, K., Chang, C. Y., Miller, E. L., Kirkland, J. G., ... & Crabtree, G. R. (2017). Dominant-negative SMARCA4 mutants alter the accessibility landscape of tissue-unrestricted enhancers. Nature Structural & Molecular Biology, 1.

  • Braun, S. M. G., Kirkland, J. G., Chory, E. J., Husmann, D., Calarco, J. P., & Crabtree, G. R. (2017). Rapid and reversible epigenome editing by endogenous chromatin regulators. Nature Communications, 8, 560.http://doi.org/10.1038/s41467-017-00644-y.s

  • Dykhuizen, E. C., Carmody, L. C., & Tolliday, N. J. (2017). High-Throughput Screening of Small Molecule Transcriptional Regulators in Embryonic Stem Cells Using qRT-PCR. In Epigenetics and Gene Expression in Cancer, Inflammatory and Immune Diseases (pp. 81-95). Humana Press, New York, NY.

  • Stanton, B. Z., Hodges, C., Calarco, J. P., Braun, S. M. G., Ku, W. L., Kadoch, C., … Crabtree, G. R. (2017). SMARCA4 ATPase mutations disrupt direct eviction of PRC1 from chromatin. Nature Genetics49(2), 282–288. http://doi.org/10.1038/ng.3735

For more references, visit our reference page..

Have Questions?

An Applied StemCell technical expert is happy to help, contact us today!