• TARGATT™ Genome Editing

TARGATT™ Genome Editing

TARGATT™ site-specific knock-in technology enables the integration of transgenes at a preselected locus in the genome, thus overcoming drawbacks of random integration. This technology is adaptable for gene integration in many different species of animals (mice, rats, rabbits, pigs) and cell lines (including CHO cells, stem cells and immortalized cell lines).

Applications:

  • Inducible expression models
  • Reporter gene insertion models
  • Transgene overexpression models
  • Humanized animal models
  • Cre - driver lines
TARGATT™ Genome Editing Categories

TARGATT™ Mouse Model Generation

Do-it-yourself kits to generate site-specific transgenic mice in 3 months! We offer TARGATT™ “attP” mice, plasmids, transgenic kits, genotyping kits.

TARGATT™ Mouse Model Generation

TARGATT™ Knockin
Master Cell Line

TARGATT™ “attP” Master cell lines and knock-in kit for rapid, site-specific transgene knock-in with high efficiency and robust transgene expression.

TARGATT™ Knockin
Master Cell Line

Products and Services
Support Materials
Technical Details

Advantages of TARGATT™ Technology:

  • High integration efficiency (up to 40%)
  • Large transgene knock-in (up to 22 kb)
  • Reduced time and cost
  • Guaranteed, high level expression of the transgene
  • Site-specificity allows a precise comparison of the effects of the transgenes among different lines
  • Site-specific knock-in at pre-selected locus overcomes challenges associates with random integration:
  • Eliminates position effect
  • Integration at intergenic region ensures that no internal genes are interrupted
  • Single copy gene integration eliminates repeat-induced gene silencing and genomic instability


Choosing the right genome editing technology: Applied StemCell uses two complementary genome editing technologies to generate advanced cell line and animal models very efficiently and effectively: the CRISPR/Cas9 technology and our propriety site-specific gene integration technology, TARGATT™ for large fragment (up to 22 kb) knock-in into a safe harbor locus.

Project Purpose

CRISPR/Cas9

TARGATT™

Knock-Out (KO)

Yes

 

Point Mutation

Yes

 

Conditional KO

Yes

 

Knock-In

(<200 Nucleotide ssODN Donor)

Yes

 

Knock-In Transgenes in

Safe Harbor Loci (>2kb)

Challenging

(but limitations on size)

Yes

 (up to 22 kb)

Knock-In

 (Plasmid DNA)

Challenging

(but limitations on size)

Yes

 (2 steps: KI docking site; KI transgene) 

Publications

https://www.appliedstemcell.com/services/targatttm-genome-editing/publications

TARGATT™ Master Cell Line

  • Chi, X., Zheng, Q., Jiang, R., Chen-Tsai, R. Y., & Kong, L. J. (2019). A system for site-specific integration of transgenes in mammalian cells. PLOS ONE14(7), e0219842.

Transgenic Mouse Book Chapters

Description of the technology

  • Zhu, F., Gamboa, M., Farruggio, A. P., Hippenmeyer, S., Tasic, B., Schüle, B., … Calos, M. P. (2014). DICE, an efficient system for iterative genomic editing in human pluripotent stem cells. Nucleic Acids Research42(5), e34. http://doi.org/10.1093/nar/gkt1290.
  • Tasic, B., Hippenmeyer, S., Wang, C., Gamboa, M., Zong, H., Chen-Tsai, Y., & Luo, L. (2011). Site-specific integrase-mediated transgenesis in mice via pronuclear injection. Proceedings of the National Academy of Sciences of the United States of America108(19), 7902–7907. http://doi.org/10.1073/pnas.1019507108.

Commentary, comparison with other transgenic methods

  • Rossant, J., Nutter, L. M., & Gertsenstein, M. (2011). Engineering the embryo. Proceedings of the National Academy of Sciences108(19), 7659-7660.

Tet inducible mice generated by TARGATT™

Advantage of Hipp11 (H11) locus

Applications for mice generated by TARGATT™ (and cited/published articles

  • Matharu, N., Rattanasopha, S., Tamura, S., Maliskova, L., Wang, Y., Bernard, A., ... & Ahituv, N. (2018). CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science, eaau0629.
  • Chen-Tsai, R. Y. (2019). Using TARGATT™ Technology to Generate Site-Specific Transgenic Mice. In Microinjection (pp. 71-86). Humana Press, New York, NY
  • Barrett, R. D., Laurent, S., Mallarino, R., Pfeifer, S. P., Xu, C. C., Foll, M., ... & Hoekstra, H. E. (2018). The fitness consequences of genetic variation in wild populations of mice. bioRxiv, 383240.
  • Ibrahim, L. A., Huang, J. J., Wang, S. Z., Kim, Y. J., Li, I., & Huizhong, W. (2018). Sparse Labeling and Neural Tracing in Brain Circuits by STARS Strategy: Revealing Morphological Development of Type II Spiral Ganglion Neurons. Cerebral Cortex, 1-14.
  • Kumar, A., Dhar, S., Campanelli, G., Butt, N. A., Schallheim, J. M., Gomez, C. R., & Levenson, A. S. (2018). MTA 1 drives malignant progression and bone metastasis in prostate cancer. Molecular oncology.
  • Jang, Y., Broun, A., Wang, C., Park, Y. K., Zhuang, L., Lee, J. E., ... & Ge, K. (2018). H3. 3K4M destabilizes enhancer H3K4 methyltransferases MLL3/MLL4 and impairs adipose tissue development. Nucleic acids researchhttps://doi.org/10.1093/nar/gky982
  • Tang, Y., Kwon, H., Neel, B. A., Kasher-Meron, M., Pessin, J., Yamada, E., & Pessin, J. E. (2018). The fructose-2, 6-bisphosphatase TIGAR suppresses NF-κB signaling by directly inhibiting the linear ubiquitin assembly complex LUBAC. Journal of Biological Chemistry, jbc-RA118.
  • Chen, M., Geoffroy, C. G., Meves, J. M., Narang, A., Li, Y., Nguyen, M. T., ... & Elzière, L. (2018). Leucine Zipper-Bearing Kinase Is a Critical Regulator of Astrocyte Reactivity in the Adult Mammalian CNS. Cell Reports, 22(13), 3587-3597
  • Kido, T., Sun, Z., & Lau, Y.-F. C. (2017). Aberrant activation of the human sex-determining gene in early embryonic development results in postnatal growth retardation and lethality in mice. Scientific Reports7, 4113. http://doi.org/10.1038/s41598-017-04117-6.
  • Nouri, N., & Awatramani, R. (2017). A novel floor plate boundary defined by adjacent En1 and Dbx1 microdomains distinguishes midbrain dopamine and hypothalamic neurons. Development144(5), 916-927.
  • Li, K., Wang, F., Cao, W. B., Lv, X. X., Hua, F., Cui, B., ... & Yu, J. M. (2017). TRIB3 Promotes APL Progression through Stabilization of the Oncoprotein PML-RARα and Inhibition of p53-Mediated Senescence. Cancer Cell31(5), 697-710.
  • Jiang, T., Kindt, K., & Wu, D. K. (2017). Transcription factor Emx2 controls stereociliary bundle orientation of sensory hair cells. eLife, 6, e23661.
  • Booze, M. L., Hansen, J. M., & Vitiello, P. F. (2016). A Novel Mouse Model for the Identification of Thioredoxin-1 Protein Interactions. Free Radical Biology & Medicine99, 533–543. http://doi.org/10.1016/j.freeradbiomed.2016.09.013.
  • Feng, D., Dai, S., Liu, F., Ohtake, Y., Zhou, Z., Wang, H., ... & Hayat, U. (2016). Cre-inducible human CD59 mediates rapid cell ablation after intermedilysin administration. The Journal of clinical investigation, 126(6), 2321-2333.
  • Sun, N., Yun, J., Liu, J., Malide, D., Liu, C., Rovira, I. I., … Finkel, T. (2015). Measuring in vivo mitophagy. Molecular Cell60(4), 685–696. http://doi.org/10.1016/j.molcel.2015.10.009.
  • Devine, W. P., Wythe, J. D., George, M., Koshiba-Takeuchi, K., & Bruneau, B. G. (2014). Early patterning and specification of cardiac progenitors in gastrulating mesoderm. eLife3, e03848. http://doi.org/10.7554/eLife.03848.
  • Fogg, P. C. M., Colloms, S., Rosser, S., Stark, M., & Smith, M. C. M. (2014). New Applications for Phage Integrases. Journal of Molecular Biology426(15), 2703–2716. http://doi.org/10.1016/j.jmb.2014.05.014.
  • Chen-Tsai, R. Y., Jiang, R., Zhuang, L., Wu, J., Li, L., & Wu, J. (2014). Genome editing and animal models. Chinese science bulletin59(1), 1-6.
  • Park, K.-E., Park, C.-H., Powell, A., Martin, J., Donovan, D. M., & Telugu, B. P. (2016). Targeted Gene Knockin in Porcine Somatic Cells Using CRISPR/Cas Ribonucleoproteins. International Journal of Molecular Sciences17(6), 810. http://doi.org/10.3390/ijms17060810.
  • Guenther, C. A., Tasic, B., Luo, L., Bedell, M. A., & Kingsley, D. M. (2014). A molecular basis for classic blond hair color in Europeans. Nature Genetics46(7), 748–752. http://doi.org/10.1038/ng.2991.
  • Villamizar, C. A. (2014). Characterization of the vascular pathology in the acta2 r258c mouse model and cerebrovascular characterization of the acta2 null mouse. UT GSBS Dissertations and These (Open Access)Paper 508 (2014)

 

 

Have Questions?

An Applied StemCell technical expert is happy to help, contact us today!